

Transient State Detection in Machine Data

Advisors:

Dr. Yoav Freund (UCSD)
Dr. Chad Holcomb (Solar Turbines)

Team Members:

Garrett Cheung
Michael Galarnyk
Jared Goldsmith

Jillian Jarrett
Orysya Stus

Executive Summary
Solar Turbines, a gas turbine manufacturing company, offers an online platform to allow customers

to remotely monitor and manage their equipment. The goals of this system are to avoid downtime, increase
asset reliability and lower lifecycle operating costs. One of the modules intended to facilitate these
objectives is the alerting capability. ​Alerts are generated when a machine parameter goes above a custom
set limit. Once an alert is generated, a fleet manager views and responds accordingly. These alerts often
allow fleet managers and customers to take preventative measures that avoid unplanned downtime and
associated costs. However, alerts are also triggered when a gas turbine is undergoing a transient state.
Transient states occur when a machine is shifting operating loads (power output) or recalibrating to
maintain a steady state. Their occurrence is often part of healthy and normal machine operation. During
transient states, key sensors in the machines spike quickly before returning to their typical values. These
quick fluctuations trigger alerts which are not necessarily useful. At best, they are a minor inconvenience to
customers. At worst, they can result in unplanned downtime while the machines are undergoing
unnecessary diagnostics, which, depending on the customer and use case, can cause millions of dollars of
lost revenue. By identifying transient states and the subsequent alerts they generate, ​Solar Turbines can
eliminate non value-added alerts shown to their customers.

How does one classify transient states in Solar’s packages? First, a data source was identified.
Specifically, machine data was obtained for 72 packages of two engine models for a two year period in
both 10 minute and 1 hour resolution. Packages are units ​composed of compressors, combustors, turbines
and other components, depending on their application type. ​This time series dataset is primarily comprised
of, but not limited to, temperature and pressure sensor readings from various positions along the packages.
Due to its proprietary nature, using this dataset required extensive preprocessing and sanitization efforts,
as well as approval from Solar Turbines. After acquiring the data, it was cleaned such that it could be used
to build a model. Because the data set did not include labels or a clear way to distinguish transients from
normal operation, modeling was done using a combination of unsupervised learning techniques. For the
same reason, domain experts were relied on heavily for validation of results. To facilitate this process, a
user interface was constructed to allow domain experts to visualize, interpret, validate and annotate results.
The process, from identifying a data source to labelling it, as well as the measures taken at each step, are
detailed below.

Figure 1. End-to-end data science process

1

Preprocessing.​ Data was filtered by a series of conditions to ensure consistency. Additionally, data

was anonymized and normalized. All methodologies were reviewed and approved by Solar Turbines prior
to movement off their network.

Cleaning. ​After preprocessing, data quality issues arose. ​As time series analysis requires
consistent and continuous data, difficulties related to sparsity were addressed. Ultimately, given the
preference for high temporal resolution and data completeness, this project focused on one engine model’s
(aliased to “Model2”) 10-minute sampled data.

Modeling. ​Once clean, Model 2's data was standardized and principal component analysis (PCA)
was performed. PCA reduced the data from 77 dimensions to 20 dimensions while maintaining 88% of the
original dataset’s variance. These principal components were analyzed using statistical methodologies,
segmented by lengths of time, and fed to unsupervised clustering algorithms. Additionally, the raw feature
“power” was analyzed using statistical functions both as a part of our ensemble model and a means to
ascertain the accuracy of the other methods. Each of these methodologies resulted in the a binary
classification of each datapoint as “transient” or “normal” operation, where 1 = “transient” and 0 = “normal.”
These scores were weighted and combined into an ensemble score, which was evaluated against a
transient threshold value. For each package serial number and timestamp, the ensemble model offers a
classification of “transient” or not. Due to the complexity of the dataset and lack of true labels, validation of
the results requires domain expertise.

Figure 2. Transient State Classification Model

Validation. ​Fig 3a shows the user interface that was built to allow domain experts to visualize,

validate and annotate results. The interface allows users to map the PCA transformed features to and from
raw features. The ensemble labels, as well as the individual scorers that comprise them, can be explored in
both the raw and engineered features. To provide context to the data, load profiles, package similarities
and feature importance metrics are able to be viewed in the interface. The inclusion of annotation
capabilities allow domain experts to validate and correct transient labels, turning these unverified labels into
ground truth. With confirmed labels, this dataset could be fed into a supervised machine learning model to
predict transient states in gas turbines.

2

Fig 3a. User Interface Overview

Fig 3b. Raw Features and Their Influence on Engineered Features

Fig 3c.​ Annotation Capability of the User Interface

3

Figures 3a, 3b and 3c highlight the main features and capabilities of the User Interface. Domain
experts can explore the raw and engineered features over time in the Time Series component (Figure 3a,
right) or in alternative subspaces in the Reduced Space component (Figure 3a, left). They can also gain
context and visualize how often a package operates in a given state or find similar packages using the
Operating Load Profile section (Figure 3a, bottom). Additionally, to better understand what the raw features
are and how they relate to the engineered features, users can explore the Machine Tags pop out window
(Figure 3b). Lastly, domain experts can validate or modify transient state classifications using the
Annotation capability (Figure 3c).

In summation, using a combination of unsupervised methods, transients can be identified,

quantified and distinguished from normal operating behavior. While the complexity and proprietary nature
of these findings significantly narrows our target audience, the methodology for approaching an unlabeled,
highly dimensional dataset can be applied to variety of other disciplines.

4

Table of Contents

Executive Summary 1

Table of Contents 5

Background 8
Solar Turbines 8
The Machinery 8
Transient Definition 9
Business Value 9
Related Works 9

Data and Environment 10
Solar’s Data Requirements 10
Data Sources 10
Data Acquisition 11
Data Preprocessing 12

Data Consistency 12
Composite Tag Creation 12
Filtering 12

Sanitization 13
Normalization 13
Anonymization 13

Caveats 13
Data Environment 13

Data Storage 13

Exploratory Data Analysis 14
Understanding the Data Format 14
Data Quality Issues 14
Tools and techniques 15

Google Colab 16
Findings 16

Feature Plots 16
Statistical Analysis 17
Model 1 Findings 21

PCA by Fleet 21
PCA By Package 24
K-means Clustering 26
Local Outlier Factorization 27
Temporal Analysis 27

Model 2 Findings 29
PCA by fleet 29

5

PCA by Subsystem 31
Temporal Analysis 32

24 Hour Analysis 34
7 Day Analysis 37
3 Month and 6 Month Analysis 37

Package Similarity 37
Tableau Dashboards 41

Top 5 Principal Components 41
Reduced vs. Raw Dataset 41
Clustering of the Reduced Dataset 42

Exploratory JavaScript Dashboard 43

Our Product 44
Raw Data Query 44
Data Transformations 45
Derived Feature Cache 45
Transient Ensemble Scores 45
Visual Validation 46

Modeling 46
Data Preprocessing 46
Raw Feature Labeling: Power Jumps 47
Dimensionality Reduction 47
HDBSCAN Clustering 48

Model Selection 48
Parameter Tuning 48

Extreme Value Labeling 49
Model Selection 49
Parameter Tuning 49

n-Minute Segmentation & Clustering (Kink Finder Labeling) 50
Model Tuning & Variations 51

Segment Length 51
Clustering Algorithm 51
Kink Threshold 52

Ensemble Scoring 52

User Interface 53
Overview and Purpose 53
Libraries Used 54
Features and Functionality 54

Reduced Space 54
Load Profiles 55

Package Similarity 55
Time Series 56

Tag Weights 56

6

Annotations 57
Audience 57

Data Pipeline 57
Scalability and Robustness Requirements 57
Raw Data Storage 58
Data Transformations 59
Derived Feature Cache 60
User Interface 60
Evaluation Strategy and Results 60

Results and Interpretation 62
Transients 62

HDBSCAN Cluster Labels 63
Eigenvector0 Step Size Labels 63
Kink finder labels 64
Power jumps labels 64
Ensemble labels 64

Principal Components 65
Package Similarity 66

Obstacles 66
Pivoting 66
Labels and Data Interpretation 66

Future Work 66
Transient Prediction 66
User Interface Gamification 67
Shutdown Analysis 67
Integration at Solar Turbines 68

Conclusion 69

Team Roles and Responsibilities 70

References 71

Appendices 72
Appendix A: DSE Knowledge 72
Appendix B: Data and Software Archive 73

7

Background

Solar Turbines
Solar Turbines is one of the world's leading producers of industrial gas turbines, with over 15,000

gas turbine systems installed in over 100 countries across the globe. In addition to manufacturing products,
they offer Equipment Health Management (EHM) to their customers. EHM is a technology platform
designed to deliver advanced remote capabilities and decision support tools. The objective of EHM is to
provide proactive support and optimize availability, reliability and value of their products. Two members of
this team, Jillian Jarrett and Garrett Cheung, are employees of Solar Turbines and work to develop new
capabilities for EHM with these goals in mind.

The Machinery
Solar Turbines’ ‘packages’ are units comprised of compressors, combustors, turbines and

application specific components. They are extremely complex machines with hundreds of moving parts,
and are generally used for movement of gas through pipelines and power generation. A brief explanation of
gas turbines and their utilities can be found on the company website:

“A gas turbine engine is a type of internal combustion engine. Essentially, the engine can be viewed as an
energy conversion device that converts energy stored in the fuel to useful mechanical energy in the form of
rotational power. The term “gas” refers to the ambient air that is taken into the engine and used as the
working medium in the energy conversion process. This air is first drawn into the engine where it is
compressed, mixed with fuel and ignited. The resulting hot gas expands at high velocity through a series of
airfoil-shaped blades transferring energy created from combustion to turn an output shaft. The residual
thermal energy in the hot exhaust gas can be harnessed for a variety of industrial processes.” 1

Figure 4. Components of a Gas Turbine for Power Generation Applications 2

1 "Gas Turbines - Products | Solar Turbines." ​https://www.solarturbines.com/en_US/products/gas-turbines.html​.
Accessed 22 May. 2018.
2 "Sigma Labs Wins Contract from Solar Turbines to Use ... - 3DPrint.com." 19 Apr. 2017,
https://3dprint.com/171698/sigma-labs-solar-turbines-inc/​. Accessed 22 May. 2018.

8

https://www.solarturbines.com/en_US/products/gas-turbines.html
https://3dprint.com/171698/sigma-labs-solar-turbines-inc/

Gas turbines are work producing turbomachinery: the application specific components are driven by

the rotating machinery that converts thermal energy to mechanical energy. The maximum rate at which this
conversion take place is the maximum power output, which is referred to as 100% load. Load refers to the
percentage of the maximum power a package is outputting at a given time.

A single package can have up to 600 machine data features, depending on model, control system,
application type, etc. For each package, there exists time series data at various resolutions, events data,
alerts data, contract data, etc. While there are over 1,900 connected packages worldwide, domain experts
and company policy limited the project to 72 packages of two different engine models.

Transient Definition
Transient states occur when a gas turbine is undergoing some sort of transition: it can be speeding

up, slowing down, or attempting to re-achieve an equilibrium at a steady state. They are periods known to
be strenuous on the packages. While no universally accepted definition exists in the industry, one domain
expert defines it as as “any instance where load (power output) changes by more than 25% in a 10 minute
timeframe.”

Business Value
Transient state identification allows Solar Turbines to improve their alerting capabilities. Currently,

alerts are generated when parameters move outside of set, static limits. For example, if a temperature
moves above a defined limit (set by design engineers), an alert is triggered. The alert is sent to customers
or fleet managers who respond accordingly. These alerts can help users identify and prevent malfunctions
in their machinery. However, transients are often visible in machine data as quick spikes in alerting
parameters, despite being part of normal operation. Thus, often times, when a transient occurs, it triggers
alerts that are false positives. They are not helpful to customers, and can misdirect them into thinking a
healthy package is malfunctioning. This can result in unnecessary diagnostics and unplanned downtime,
which can cost customers millions of dollars in lost revenue. Identifying specific types of transients and the
subsequent alerts they generate allows Solar Turbines to reduce the number of non value-added alerts
shown to their customers.

Additionally, it is hypothesized that transient states are correlated with machine failures. Proper
identification of that transient subtype would allow for employees and customers to take preventative
actions and reduce major failures and unplanned downtime. In terms of quantifying the cost of early
inspection/repair versus catastrophic failure, Solar Turbines uses an order of magnitude difference as a
baseline. A $100,000 spent on early repairs could prevent a $1 million catastrophic failure. Before the
relationship between machine failures and transient states can be investigated, transient states must be
identified. For these reasons, a transient state detection system would reduce unplanned downtime (and
associated costs) and hence be invaluable to Solar Turbines and their customers.

Related Works
Transient detection in the processing industry is not unexplored terrain. Kim et al. developed a 3

physics-based gas-path analysis based model for the transient behavior analysis of a 150-MW stationary

3 "Model Development and Simulation of Transient Behavior of Heavy"
http://gasturbinespower.asmedigitalcollection.asme.org/article.aspx?articleid=1421229​. Accessed 6 Jun. 2018.

9

http://gasturbinespower.asmedigitalcollection.asme.org/article.aspx?articleid=1421229

gas turbine to predict time-dependent variations of the performance parameters such as power, shaft
speed, fuel consumption, and gas-path temperatures. One issue is the degradation of gas-path parts
affects the functional relation between performance parameters. Furthermore, developing a physics-based
model has its limitations, especially when little information is available from the gas turbine parameters and
component maps . An alternative approach is to develop a quantitative model based on gas turbine 4

measurements. These models often embed knowledge of a proprietary nature such as the performance
maps of the turbomachinery components and other empirical correlations derived from extensive testing.
Most of the reports of gas-path analysis applied to real data found in the literature rely on publicly available
engine models and are used to assess the health condition of a particular gas turbine during its operational
life. 5

Data and Environment

Solar’s Data Requirements
Due to the proprietary nature of this dataset, strict guidelines were set forth before data could be

moved off the internal network. Requirements are as follows:

● All customer data removed
● Details relating to engine models excluded
● Package serial numbers aliased
● Column names aliased
● Data values normalized
● All columns required approval by the Solar Digital team
● Data must be for machine operation between December 5, 2015 and December 5, 2017
● Data only for 72 packages belonging to two engine models
● Only machine data with 10-minute and 1-hour resolution may be used
● Dataset may not be made publicly available

Data Sources
Due to the restrictions set forth above, machine data is our principal data source. This data comes

from the packages themselves, and is mainly comprised of sensor readings. More specifically, they are
primarily temperature and pressure readings, but also include vibration and displacement measurements,
speeds, programmable logic controller values, etc. Index-type columns, such as package and engine serial
numbers, as well as time measurement columns (timestamp, engine hours, engine starts) were also
included. These features or, as ‘tags’ as they are referred to at Solar, are listed and explained in greater
detail in our data dictionary, available on our ​GitHub​. Solar currently stores 1 hour resolution data, which is
used to generate alerts and support the EHM platform. They also store 10-minute resolution data. One
second resolution data also exists, but only for intervals surrounding shutdowns. Unfortunately, the 1
second temporal resolution data was not approved for investigation. Ultimately, we obtained 1 hour and 10

4 "IEEE Xplore: IEEE Transactions on Reliability - (Popular)."
https://ieeeexplore.ws/xpl/topAccessedArticles.jsp?punumber=24&topArticlesDate=November+2017​. Accessed 6 Jun.
2018.
5 "A Model-Based Anomaly Detection Approach for ... - ASME Proceedings."
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1908327​. Accessed 6 Jun. 2018.

10

https://github.com/mas-dse-g4cheung/TransientStateDetection/tree/master/Data%20Dictionary
https://ieeeexplore.ws/xpl/topAccessedArticles.jsp?punumber=24&topArticlesDate=November+2017
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1908327

minute data for 72 packages belonging to two different engine models for two years. A summary table of
data specification is included below.

Table 1. Data Specifications

Number of
Packages

Timeframe Data
Resolution

Features

72 ​(total)

Model1: 33
Model2: 39

2 years
Start date:
12/5/2015

End date:
12/5/2017

1 hr ​and
10 minute​ for
both models

Model1: 145 features,
Model2: 77 features​, comprised of:
Sensor readings: ​pressures, temperatures, speeds,
displacement
Package basics: ​timestamps, engine hours, package
serial numbers, etc
Programmable logic controller (PLC) readings:
signals sent to the machine through the control system

Data was processed on the Solar servers and moved off the network in the form of 144 csv files. There
were two csvs for each package: one with the 10 minute data and another with the 1 hour data. The
columns for each engine model of all csvs were identical. The source and destination of the machine data
are shown in the table below.

Table 2. Raw data Sources and Destinations

Dataset
Name

Source Destination Acquisition Notebooks,
Code, Documents

Data Size &
Format

Other Notes

1hr_machi
ne_data

Solar
Turbines
servers

AWS EC2 Available on our
github:
https://github.com/mG
alarnyk/AnomalyDetec
tionMachineData

~1gb
(421,204
rows) in 72
csv files

Anonymized, confidential
(data cannot be made
publicly available). Data
dictionary available

10min_ma
chine_data

Solar
Turbines
servers

AWS EC2 Available on our
github:
https://github.com/mG
alarnyk/AnomalyDetec
tionMachineData

~6gb
(3,107,256
rows) in 72
csv files

Anonymized, confidential
(data cannot be made
publicly available). Data
dictionary available.

Data Acquisition
Machine data was pulled from Solar Turbines databases using an internal Solar Turbines Python

library. This module allows users to retrieve machine data values for a specified date range in the form of a
pandas dataframe. Both 1hr and 10 minute resolution dataframes were acquired for the 72 packages
operating in the approved timeframe, December 5, 2015 - December 7, 2015.

11

https://github.com/mGalarnyk/AnomalyDetectionMachineData
https://github.com/mGalarnyk/AnomalyDetectionMachineData
https://github.com/mGalarnyk/AnomalyDetectionMachineData
https://github.com/mGalarnyk/AnomalyDetectionMachineData
https://github.com/mGalarnyk/AnomalyDetectionMachineData
https://github.com/mGalarnyk/AnomalyDetectionMachineData

Data Preprocessing
Extensive preprocessing was required prior to moving data off of the Solar network. In addition to

the requirements set forth by Solar Turbines, issues with data consistency were addressed. The data
preprocessing workflow is as follows:

Figure 5. Solar-side Data Preprocessing Workflow

Data Consistency
Individual packages have unique configurations and sensors among other features. For example,

packages used for power generation applications have generator related sensors, while packages used for
compression of gases do not. Measures were taken to ensure consistent data for individual packages of
each engine model at each temporal resolution.

Composite Tag Creation
Composite tags are features that are constructed from the raw sensor data. For example, the T5

spread tag is difference between the highest and lowest T5 sensor readings. It is not a directly measured
value, but rather, a calculated one. In Solar’s data ingestion pipeline, these composite tags are calculated
and stored for the 1hr resolution data, but not the 10 minute data. To account for this, the 10-minute
resolution data includes the same features as the 1 hour data, composite tags were generated for the 10
minute dataset using the equations defined by Solar. Neither these calculations nor the code executing
them could be made publicly available.

Filtering
The machine data was filtered by a series of conditions, per domain experts’ suggestions. These

measures were taken to reduce the amount of variation in the original data and reduce the influence of
potentially confounding variables. First, we are only considering data where the package is running close to
its capacity in terms of power output, which is referred to at Solar as “on_load” conditions. Second, we
acknowledged that some of the packages run only on gas fuel, while other can be run on liquid or gas. Fuel

12

type can cause major differences in turbine operation. To maintain consistency, all data points where the
machines are running on liquid fuel were removed. Finally, because not all machines contain the exact
same sensors (due to different configurations and use cases), columns which are not common across all
packages are removed as well. This also applies to the composite columns mentioned above. For Model 1,
that reduces our dataset to 145 features, 163,544 record in 1 hour temporal resolution and 1,501,927
records in 10 minute resolution. For Model2, our dataset was reduced to 77 features, with 257,732 records
of 1 hour data and 1,604,987 records of 10 minute data.

Sanitization
Measures taken to satisfy the aforementioned Solar requirements are detailed below.

Normalization
Solar Turbines mandated data be normalized by factors that would remain unknown to any

non-Solar employees. Factors were largely influenced by the EHM Alerting capability. As detailed in the
Business Value section, many features in our dataset are used to generate alerts (notifications to
customers and Solar employees that specific parameters had crossed some sort of limit). These limits are
values defined by Solar Turbines’ engineers and considered thresholds outside of which packages should
be monitored. Not all features are used to generate alerts. Those that do, however, were normalized by
their global high limit values. For columns without global limits, domain experts were consulted and data
was normalized by factors suggested by them. Two features were not normalized: engine starts (the
number of time an engine has started) and timestamps. While the normalization was a requirement of Solar
Turbines, it offers some consistency and rules of thumb to our team members. After normalization, for most
columns, expected values are generally between 0 and 1.

Anonymization
Column names were aliased based on their subsystem and tagtype, as described in the

Understanding Data Format section below. Additionally, package serial number and engine serial numbers
were aliased to integers. A data dictionary was also created to provide descriptions and data types of each
column.

Caveats
Due to the proprietary nature of our data, our true ‘raw’ dataset is not publicly available. What is

henceforth referred to as ‘raw data’ is what was moved off of the Solar network after extensive processing,
as detailed above. Additionally, the code used to preprocess our data is not included in our github
repositories. It is housed and executed exclusively from within the Solar network.

Data Environment

Data Storage
The anonymized data from Solar is stored in a PostgreSQL database. The current volume of data

does not require a distributed storage solution, and ease of use was considered paramount. The 1 hour
and 10 minute resolution data is currently hosted on an AWS EC2 t2 large instance. Data from the 144
csvs was stored in 4 tables, as detailed below.

13

Processed Data Location:​ PostgreSQL, AWS EC2
Import Code:​ ​/src/storage/postgres.py​ (subject to change)
Input:​ 1hr_machine_data

Destination Tables:
sensor_readings_model1_1hr
sensor_readings_model2_1hr

Input:​ 10min_machine_data
Destination Tables:

sensor_readings_model1_10min
Sensor_readings_model2_10min

For more detail on our data storage solutions, refer to the Pipeline section.

Exploratory Data Analysis

Understanding the Data Format
A data dictionary was generated to exhaustively document data structure, meaning, and format. In

the datasets, the column headers define a tag using the format ​SUBSYSTEM_C_TAGTYPECOUNTER
where

● SUBSYSTEM​ refers to the turbine section it is usually associated with
● C​ denoted whether or not a tag is calculated versus measured (C means calculated, as is an

optional argument)
● TAGTYPE​ refers to the type of measurement being recorded
● COUNTER​ is an incremental counter to differentiate tags with the same subsystem and tagtype.

For example, C_C_DP1, is a composite tag measuring differential pressure in the combustion system. The
first C represents the associated subsystem (Combustion), the second C indicates that the tag was
Calculated, and DP refers to the type of measurement (Differential Pressure). It is the first tag in the set
with these qualities, as indicated by the 1. This data format will be referenced throughout this project.

Data Quality Issues
As time series analysis requires consistent and continuous data, analysis was conducted to

determine data quality and consistency. Specifically, the shape of the data and null counts were noted and
feature plots generated. Complete records are defined as timestamps per package with no nulls in any
features. With regard to the 1 hour resolution data, Model1 has 163,544 total records and 145 tags with
46.5% (76,833 timestamps) being complete records while Model2 has 257,732 total records and 77 tags
with 64.6% (166,500 timestamps) being complete records.

The data completeness on a per-package basis differs greatly between models. To quantify these
differences, each package was analyzed individually. Specifically, the first and last timestamps were noted
and the theoretical of number of data points required to have a 100% 1-hour data for that time frame was
calculated. The actual number of records for each package was divided by this maximum and a raw
percentage of percent completeness was generated. For example, a package that only ran for one week in

14

https://github.com/mGalarnyk/AnomalyDetectionMachineData/blob/master/src/storage/postgres.py

the approved timeframe should have 168 data points (24 points per day * 7 days). If a package is found to
only contain 84 records, it is considered 50% complete (84/168). The distribution of the data completeness
metrics between the two engine models is shown below.

Figure 6. Distribution of Data Completion Percentages for Each Engine Model (Based on 1-hour data)

These distributions show that Model2 has a higher degree of data completeness than Model1.

While packages with high data completeness have similar data availability between the two models, the
medians for each differ dramatically. Specifically, the average Model1 package has 48.55% data
completeness: the average package in the distribution has less than half of it’s possible records. For
Model2, on the other hand, the mean is 78.20%, and the median package is 82.32% data complete. A
summary of findings is shown below.

Table 4. Data Completeness Results (1-hour data)

Data Completeness (Calculated Per PSN) Model1 Model2

90th percentile 89.25% 94.94%

Mean 48.55% 78.20%

Median 48.60% 82.32%

25th percentile 24.84% 69.23%

Data completeness analysis resulted in Model2 data being used for our final product.

Tools and techniques
The primary tool used for exploring the dataset was using the programming language Python

(version 3.6) by way of Jupyter notebooks. Details of the libraries and their functions are as follows:

15

Table 5. Python Libraries Used

Python Library Use Case(s)

pandas Data cleaning, parsing, and filtering.
Dataframe manipulation

sqlalchemy Data import

seaborn Visualization

matplotlib Visualization

sklearn Data standardization, dimensionality reduction, clustering,
scoring

datetime Timestamp manipulation

hdbscan Unsupervised clustering

Additionally, Tableau and JavaScript dashboards were constructed to allow for more interactivate means of
data exploration.

Google Colab
Google Colaboratory was initially utilized to facilitate collaboration between team members and

advisors. While this tool allows for individuals to work together on a live notebook, it had several
drawbacks. When users are idle on the notebook for 90 minutes, the virtual machine used to host the
notebook is reclaimed. Consequently, Python libraries need to be reinstalled every time when returning to
the notebook. Luckily, most commonly used modules are preinstalled on the virtual machine. The rest were
reinstalled in the first cell of the notebook. Additionally, file I/O ended up being very convoluted and difficult
to manage. In terms of benefits, Google Colab works well with the PostgreSQL database on AWS EC2 and
allowed for the efficient loading of data. Additionally, there was no need to set up Python environments or
worry about different versions of Python or various libraries.

Findings
Exploratory data analysis has shown that there is a huge amount of variability within our dataset,

which is supposed to represent normalized, steady state operation of gas turbines at on load or full load
conditions. Extensive exploration has elucidated the causes of these inconsistencies. For context, much of
the initial exploration was done with the objective of identifying anomalies. However, because transients
are extreme values, exploratory data analysis in the pursuit of anomalies successfully helped us identify
them. Furthermore, it provided insight and facilitated identification of trends and patterns in an extremely
complex, multidimensional time series data set.

Feature Plots
Feature plots were generated for each tag of both engine models, with all the packages considered.

For each column, a line graph shows value of that tag over the two year period. Each colored line
represents a unique package of that engine model. These feature plots are useful in understanding how

16

tags move over time, which tags have greater variance which are more stable (low variance) as well as
visually seeing spikes/dips in trends signifying potential anomalies. An example feature plot:

Figure 7. Feature plot of PERF_C_P5 for all Model1 packages, a composite pressure tag related to
performance. This highlights that packages generally operate between 0.5 and 1, with some outliers visible
outside of these boundaries.

The complete set of feature plots for all tags of both engine models can be found on the Team Drive.

Statistical Analysis
Statistical methods were developed for finding anomalies values in our dataset. Specifically, Python

methods were built to identify the following:

● Flatlines (unchanging values may indicate failed sensors)
● Datapoints outside defined thresholds
● Outliers (anything outside the interquartile range, IQR = 1.5*q3-q1)

○ Using single package IQRs
○ Using fleetwide IQRs

● Data points outside several standard deviations of mean or median
○ Using single package means/medians
○ Using fleetwide means/median

● Step-size changes
○ Based on rolling averages and rolling standard deviations (looking for sudden spikes

or dips in the data)
● Power Jump

○ Looks for jumps in output power in the dataset. Used for detecting transients
● Global limit deviants

17

○ Looks for data points where any feature is outside the global limit

We evaluated these functions on our raw data. Below is a feature plot, where we look at the feature
‘C_C_DP1’, a tag measuring a differential pressure in the combustion subsystem. Each package is plotted
in a different color. Then, we applied one of our outlier functions to this data. Specifically, we used the IQR
outliers function that identifies any points outside 1.5*IQR from the 25th and 75th percentiles as outliers.
IQR is the interquartile range and represents the range from the 25th percentile to the 75th percentile of a
given feature. We replotted the raw data, where blue points show what we consider ‘normal’ data and red
points are labelled outliers, as can be seen below:

Figure 8. Successful IQR method results (left side: raw data colored by package, right side: anomalous data
points colored red and normal data points are shown in blue)

Another statistical function identifies data points several standard deviations outside of a measure
of central tendency. The number of standard deviation used (threshold) can be changed as an input
parameter, as can the measure of central tendency value (mean or median, by package or by fleet).The
figure below shows a pressure ratio related to package performance. Datapoints outside 2.5 standard
deviations of the mean are colored red, while points within 2.5 standard deviations are blue. The plots allow
domain experts to visually explore cutoffs and data behavior. While a 2.5 standard deviation threshold
catches most of the outliers, some are missed.

18

Figure 9. Somewhat successful Stdev method results (red: outlier, blue: normal)

Similar to the standard deviation function, a method to detect step size changes over time was
implemented. This step-size function calculates a rolling mean and rolling standard deviation, and identifies
points z standard deviations outside of these values where z is a threshold. The length of time for which the
rolling averages and rolling standard deviations are calculated, as well as the z-score threshold, are input
parameters. In the example below, points were identified where PCD jumps more than 3 standard
deviations from a rolling mean. A seven day period was used to calculated the rolling mean and rolling
standard deviation. This method allows for investigation of relative step size changes rather than distances
from an overall mean. A scatterplot graph was constructed to visualize where the step sizes changes are
occurring. Because of the extensive filtering we had to do to obtain the raw data, there are cases where
data skips timestamps, resulting in spots where the data could look like a jump but in reality, the data points
were simply not continuous:

Figure 10. Step-size jumps using a 7-day rolling mean, ignoring data points with gaps in time (blue: data
plotted over time, red: step-size jumps detected)

19

From these statistical functions, a large number of statistical outliers were identified. The following tags
were excluded from the analysis: 'timestamp','sum_eng_st','sum_esn','sum_eng_h','psn','id'. Findings are
detailed in the summary table.

Table 6. Statistical Analyses Findings (Using 1-hr Resolution Data)

Function Parameters Model Outliers
Count

Total
Count

%
Outliers

Interpretation

Standard
deviations
outliers

Z =2.5,
centerpoint =
fleetwide mean
per tag,
ignore_cols
=['timestamp','su
m_eng_st','sum_e
sn','sum_eng_h','p
sn','id']

1 479,470

11,140,7
85

4.30% For Model 1, 479,470 data points
outside 2.5 standard deviations of
the fleetwide mean for a given
parameter.

2 534,316 12,820,5
00

4.17% For Model 2, 534,316 data points
are outside the 2.5 standard
deviations of the fleetwide mean

IQR
outliers

By psn = False,
ignore_cols =
['timestamp','sum
_eng_st','sum_es
n','sum_eng_h','ps
n','id']

1 417,966

11,140,7
85

3.752% Model 1 has 417,966 data points
outside the fleetwide interquartile
range across all tags

2 634123 12,820,5
00

4.964% Model 2 has 634,123 data points
outside the fleetwide interquartile
range across all tags

Global
limit
outlier

ignore_cols =
['timestamp','sum
_eng_st','sum_es
n','sum_eng_h','ps
n','id']

1 983,294 11,140,7
85

8.826% Model 1 has 983,294 data points
outside the global limits across all
tags

2 347,878 12,820,5
00

2.713% Model 2 has 347,878 data points
outside the global limits across all
tags

Power
Jump **

Powercol =
‘perf_pow’,
jump=0.25,
data_res = ‘1hr’

1 284 76,833 0.37% Power was not available for this
model so PCD was used as a
substitute

2 2658 166,500 1.60% Model 2 has 2,658 jumps in power
for our given dataset

Flatline

Threshold = 12 1 246,247 11,140,7
85

2.21% Model 1 has 246,247 instances
where the data flatlined for a 12 hour
period

2 366,065

12,820,5
00

2.855% Model 2 has 366,065 instances
where the data flatlined for a 12 hour
period

20

stepsize threshold=3,
ignore_cols =
['timestamp','sum
_eng_st','sum_es
n','sum_eng_h','ps
n','id']

1 91673 11,140,7
85

0.823% Model 1 has 91,673 step size jumps
across all tags

2 176425 12,820,5
00

1.376% Model 2 has 176,425 step size
jumps across all tags

 ** ​Note: Because transients are defined as 25% jump within a 10 minute period, results from running the Power Jump
function on the 1hr dataset is unsuitable for labeling transients and this example is purely for exploration. Transient
verification (described later in report) was run on the 10 minute dataset.

Model 1 Findings
Due to the larger number of features, initial EDA was conducted on the Model1 1-hour resolution data.

PCA by Fleet
PCA was performed on 1-hr resolution machine data for 32 distinct Model1 packages. Each record

included a package serial number, timestamp, and 142 features. 7 of the 142 features were dropped
because of a high number of missing values, detailed below. Each of the dropped features was derived
from other features and highly correlated when populated. After removing these sparse tags, data was
standardized using scikit-learn’s StandardScaler module and PCA was performed.

Table 7. Tags Excluded from Model1 PCA by Fleet (1-hr Resolution Data)

Tag Number of records missing

sc_pct2 30,561

sc_pct1 31,088

c_dt7_3 50,726

c_dt7_2 50,726

c_dt7_4 50,726

c_dt7_1 50,726

vsc_c_pct_e1 83,730

When evaluating a fleetwide PCA model, we found that the top 20 principal components retain

86.16% of the dataset’s variance. 25 principal components retain 90.25% of the dataset’s variance.

21

Figure 11. Variance retained versus number of principal components (Model1 1hr data)

The raw data features contributing to the top 5 eigenvectors (which retain 53.66% of the were
identified. 53.66% They were analyzed by both measurement and subsystem type. The second
principal component, for example, was identified to be primarily temperature readings (shown below on
the right in red). The third principal component was heavily influenced by tags related to the fuel
subsystem (shown below on the left in yellow).

22

Figure 12. Features and their weights in the principal components (Model 1 Fleetwide PCA). Left:
Principal Component 2, colored by measurement type. Right: Principal Component 3, colored by
subsystem.

23

The complete set of these eigenvalue plots, as well as plots of top 5 eigenvectors over time for each
package are available on our ​GitHub​.

A summary of our initial Model1 fleetwide PCA findings is detailed below:

Table 8. Detailed Findings of our Principal Component Analysis (Model 1 Fleetwide model)

Principal component Contributing features

1 Correspond to pressures, some temperatures in fuel system and
gas path

2 Correspond to temperatures (distinct from the temperature tags in
principal component 1)

3 Mix of pressures, temperatures, differential pressures and
differential temperatures (no clear or obvious groupings)

4 Vibration related tags (displacements and gap voltages) plus some
temperatures and differential temperatures

5 Mix of gap voltages, temperatures, positions, levels (no clear or
obvious groupings)

PCA By Package
In addition to investigating PCA by engine model, principal component analysis was done on an

individual package basis, per the suggestion of domain experts. The primary motivation for this approach
was see how our packages related to one another and better understand the inner workings of a single
package. The same preprocessing steps were taken as the PCA by fleet model (see PCA by Fleet section).
The results were informative: the principal components looked very for different packages. The figures
below show two distinct Model1 packages with very different features contributing to their first principal
component. PSN26’s first principal component is most heavily influenced by temperature tags related to the
gas path subsystem. PSN7, on the other hand, is dominated by gap voltages related to the vibration
subsystem, shown in green, as well as engine history tags (engine hours and engine starts), which colored
in black. Additionally, the shape of of the bar charts is noticeably different. PSN 26 is heavily influenced by
approximately 30 tags, visible by the steep reduction in values after the ‘v_d_7’ bar. PSN 7 has large
contributions from over 50 tags and a less dramatic shift in values (influence) from each of the contributors.

24

https://github.com/mGalarnyk/AnomalyDetectionMachineData/blob/master/report_notebooks/pca/pca_model1_report.ipynb

Figure 13. Features contributing the first principal component of two distinct Model 1 packages (Model 1
PCA by package). Higher values imply bigger contributors. Left: PSN26’s first principal component is
primarily influenced by temperature related features (colored red). Right: PSN7’s first principal
component is primarily influenced by gap voltages (colored in green) and tags related to engine age
(colored in black)

25

K-means Clustering
Clustering was implemented in efforts to find similarities between data points. Its main advantages

are its speed and that it doesn’t require labels. Furthermore, it allows for comparisons between our
transformed data and our raw data. Clustering on the engine-wide PCA model was difficult to interpret, but
the PCA model by package revealed obvious groupings. For example, the plot below shows three distinct
clusters for PSN21. The clustering was done with 20 principal components, but the axes in this plot are
principal components 1 and 2.

Figure 14. K-means clustering on PSN 21 1hr resolution reduced data set. (PCA model by package)

We mapped these clusters back to the raw data, and found the following distributions:

Figure 15. Distribution of values by cluster of raw data features. Left: boxplots of engine starts for each of the
three clusters. Right: boxplots of P5 (pressure at turbine inlet) for each of the clusters.

The x-axis shows the distinct clusters and the y-axis represents raw data features. Sum_eng_st is a major
contributor to the first principal component and P5 is prevalent in principal component 2. ​It was discovered
and confirmed by our domain experts that the distinct clusters to correspond to operating states of the

26

package. In the example above, the blue cluster contains data points where the package is operating at
full-load conditions, the yellow cluster contains on-load conditions, and green cluster captures the
transitions between the two load states.These transitions between the two load states were initially
believed to be anomalies but later confirmed to be transients.

Local Outlier Factorization
Local Outlier Factorization, LOF, is a method for finding anomalous data points based on local

neighbor distance and density. Its ability to handle high dimensional data and varying cluster density made
it a potentially good match for our data set. We explored it on the PCA by package reduced data set, as
shown below. Though we considered combining LOF with subspace sampling, the project changed
directions before parameter tuning was conducted.

Figure 16. LOF on PSN 21 reduced data set. White data points are normal observations, red data points are
hypothesized to be abnormal observations. The blues correspond to probability densities of point being
abnormal, where darker blue refers to higher probability of a data point being flagged as abnormal.

Temporal Analysis
The temporal element of our PCA by fleet analysis was investigated at different timescales. ​As

detailed above in the Model1 Findings PCA by Fleet section, the first five eigenvectors are comprised
primarily of the following: 1 - pressures, 2 - temperatures, 3 - mixed tags, 4 - vibration tags, 5-mixed tags.
24 hour, 7 day, and 30 day sample timeframes were reviewed. On the 7 day scale, we were able to see
regular 24 hour fluctuations in some of the packages. Some showed no fluctuations. Some showed partial
sensitivity to time. An example of each are shown below:

27

Figure 17. TOP LEFT. PSN 3 shows a strong temporal elements, with 7 peaks over a one week period,
particularly in eigenvectors 1, 2, and 4. TOP RIGHT. PSN 14 does not show clear peaks at 24 hours intervals.
There are some peaks but not as distinct as in PSN 13 (left) BOTTOM LEFT: PSN 10 shows no clear temporal
patterns. BOTTOM RIGHT: PSN 1 for a single day shows strong temporal elements for eigenvectors 1 and 2
as well as weak temporal elements for 3, 4, and 5. Additionally, eigenvectors 1, 3, and 5 peak upwards while 2
and 4 dip downwards during the daytime.

A temporal element was not found in every package nor consistently in a subset of packages. ​It is
unclear why some packages have strong temporal elements, while others do not. We hypothesize that
these different results might be due different application types of the individual packages. For Model1,
some of the packages are generator sets (to generate electricity) while others are compression sets (used
for movement of gases through pipelines).

Table 9. Model1 Temporal Findings (Based on 24 hour analysis)

Temporal Patterning Count Package Serial Numbers

Packages with at least 1 of the top 5
eigenvectors showing ​strong
temporal patterns

9 3, 6, 7, 13, 17, 21, 22, 26, 28

Packages with at least 1 of the top 5
eigenvectors showing ​partial
temporal patterns

10 1, 12, 14, 15, 16, 18, 23, 24, 25, 31

Packages with ​none ​of the top 5
eigenvectors showing temporal
patterns

9 2, 4, 5, 8, 9, 10, 11, 27, 33

28

Model 2 Findings
Similar to Model 1, principal component and temporal analyses were performed on Model2 data.

Due to data quality, the temporal analysis completed was much more in depth and package similarity was
also performed.

PCA by fleet
PCA was performed on 1-hr resolution machine data for 38 unique Model2 packages. Each record

included a package serial number, timestamp, and 74 features. Of the 74 features, 3 were dropped
because of a high number of missing values, detailed below. Each of the dropped features is highly
correlated to other features when populated. After removing these sparse tags, records with nulls were
dropped, data was standardized using scikit-learn’s StandardScaler module and PCA was performed.

Table 10. Model2 Tags removed

Tag Number of records missing

sc_pct1 56,907

sc_pct2 56,907

sc_c_pct_e1 91,154

When evaluating a fleetwide PCA model, we found that the top 20 principal components retain
88.02% of dataset’s variance. 22 principal components are required to surpass the 90% threshold
(90.36%), as shown below. The number of principal components and the cumulative percent of the
dataset’s variance retained is illustrated below.

Figure 18. Variance retained versus number of principal components, for Model2 1hr resolution data

29

The raw data features contributing to the top eigenvectors of both models were identified. They
were determined by both measurement type and subsystem type. The first principal component, for
example, was identified to be primarily temperature readings. More specifically, they are temperatures
related to the load (power output) of the gas turbine. Plots of all eigenvalues corresponding to our first
five principal components both color coded by subsystem and measurement type, is available on our
GitHub.

Figure 19. Features contributing the first principal component of Model2 packages (Model2 PCA by fleet)
Main contributors are T5 and power, which are tags related to the load (power output) of the packages

30

A summary of our initial Model1 fleetwide PCA findings is detailed below:

Table 11. Key Findings of Principal Component Analysis on Model2 (Fleetwide model, 1-hr data)

Principal
component

Contributing features

1 Predominantly temperatures related to the gas path, fuel system and
generator system

2 Controller related tags: command, position

3 Pressure and temperatures related to the fuel and lube oil system

4 Pressure, differential pressures, temperature, differential pressures related
to fuel and lube oil systems.

5 Temperatures, differential temperatures, engine hours and starts, currents
related to the generator and lube oil systems. Most significantly, the largest
contributor is ambient temperature

 PCA by Subsystem

Prior to implementing any clustering algorithms on the eigenvectors, principal component analysis
by subsystem was investigated. The goal of this exploration was to find a subset of features that would
show three distinct groupings when plotted in the reduce space. These three groupings were initially
expected to represent the three clusters we saw in the Model1 PCA by package model: one cluster
containing points where the package is operating at on-load conditions, another containing points where
the package is operating at full load conditions and the third capturing the transients. While the “by package
pca” model was informative, it was governed by operating behavior of the single packages. If, for example,
a package only operated in one mode, it would be difficult to ascertain whether that mode was on load or
full load. For that reason, we investigated subspaces such that three groupings were evident in a PCA by
package model. Several different approaches were taken, including PCA on different combinations of
subsystems, packages, and select specific tags known to correlate with performance (suggested by
domain experts). The figure below shows the first 5 eigenvectors plotted against each other in a scatter
matrix, where the PCA model is limited to tags belonging to the generator and package equipment
subsystems.

31

Figure 20. First 5 Eigenvectors on Generator+Package_equipment Subsystems for All Model2 PSNs
Scatter matrix. Rows and Columns: Eig0 to Eig4

While the figure above shows some subspaces that have distinct clusters , such as eigenvector 0
by eigenvector 4 (in the first row and fourth column), it was found that these clusters do not correspond to
load profile. Employing PCA using only generator and package equipment features change the contributors
too much. Specifically, it eliminated the main contributors to the PCA by model “load profile” eigenvector:
T5s and power. For this reason, our modeling using principal component analysis with all Model2
subsystems.

Temporal Analysis

The following 24 hour, 7 day, 3 month and 6 month analyses were done using the results from the process:

● Drop sparse packages without any complete days
● Drop engine starts and engine hour tags
● Drop records with any nulls
● Standardize features to 0 mean and unit variance

32

● PCA on sensor data, each row a point in time with 70 features

The top eigenvectors for Model 2, differing from Model 1, correspond to load profiles (Principal
Component 1) and actuator states, which correspond to the positions of the various valves throughout the
package (principal component 2). Principal components 3 and 4 are less clear cut, but correspond to
pressures.

Similar to Model 1 findings, a consistent temporal pattern was element was not found. Some

packages showed regular 24 fluctuations, while others showed weak or none. Examples of each are shown
below.

Figure 21. Left: PSN 37 shows clear peaks at 24 hours intervals with 7 peaks over a one week period for
all eigenvectors. Center: PSN 55 shows weak temporal influence. Right: PSN 49 does not show obvious
temporal influence.

Temporal patterns findings in each Model2 package are summarized below.

Table 12. Model2 Temporal Patterns (Based on 24 hour analysis)

Temporal Patterns Count Package Serial Numbers

Packages with at least 1 of the top 5
eigenvectors showing ​strong
temporal patterns

15 35, 36, 37, 45, 46, 47, 56, 57, 58,
59, 60, 62, 68, 71, 72

Packages with at least 1 of the top 5
eigenvectors showing ​partial
temporal patterns

8 38, 39, 40, 41, 53, 55, 61, 67

Packages with ​none ​of the top 5
eigenvectors showing temporal
patterns

12 34, 42, 48, 49, 50, 51, 52, 63, 64,
65, 66, 69

33

24 Hour Analysis

For each package and for each of the top 4 eigenvectors, complete 24 hour segments were
compiled to track the change in eigenvector coefficients over those periods. When plotted together, these
results suggested several types of behavior.

Figure 22. 24 hour analysis of PSN 48 (10 minute data). Each subplot shows a unique eigenvector plotted by
hour of day. (top left: eig 1, top right: eig 2, bottom left: eig 3, bottom right: eig 4)

To understand these daily behaviors better, we ran the K-Means clustering algorithm on all 24 hour
segments from all packages. For the first eigenvector, there appeared to be approximately 60 clusters.
Within those 60 clusters we see variations of 3 different patterns

● A relatively stable daily fluctuation. This pattern represents normal operating and dominates

most of the clusters. Each cluster represents a different load on the package. We have
found each package typically has a high and low operating modes. (see Figure 24)

● Normal operating interrupted by one or more jumps between operating modes. (see Figure
25)

● Normal operating interrupted by a quick, sharp spike. This pattern represents transient
states. (see Figure 24)

34

Figure 23. Clusters of 24 hour load profiles (also continuous, Model 2, 10 minute data). The grid is comprised
of 225 distinct clusters and is sorted such that the most common clusters (load profiles) are on the top and
the less common clusters are towards the bottom. The top rows should steady, single load behavior,
punctuated by spikes (transients). The lower rows show step size shifts that correspond to changes in load
conditions.

35

Figure 24. A sample cluster of 24-hour eigenvector 1 coefficients. The mean represents normal operating
status at this load. The spikes signify transient states.

Figure 25. This sample of eigenvector 1 coefficients depicts a group of 24-hour periods with four operating
mode switches and many shorter transient states.

36

Figure 26. Example distributions of 24-hour load profiles per package for the top 4 eigenvectors. Different
PSNs exhibit different operating behaviors.

7 Day Analysis

An in-depth exploration of the first two eigenvectors in seven day increments was completed. It
helped visualize normal operating behavior, as well as identify transient events, as shown in the example
below (Figure 27). Here, we can see a large shift in both eigenvectors 1 and 2 on Wednesday, November
30th.

3 Month and 6 Month Analysis

Using 10 minute data from Model 2, we plotted 3 and 6 month spans of eigenvector 1 and 2
coefficients, colored by day of week. In addition, a scatter plot of the 2-d space was plotted using the same
coloring. In the 3 month plots, the points are connected by edges to show movement over time. In the 6
month plot, each day is averaged to a single point. See Figure 28 for examples of each.

No patterns by day of week are evident, nor are longer term trends or patterns. These initial

perceptions were confirmed by our domain experts. However, the three main patterns seen in the 24-hour
PCA + K-Means analysis are also seen here.

Package Similarity
This analysis was completed to determine which clusters (30 min segments) and which packages

are most similar to one another. We generated cluster maps using euclidean distance as the distance
metric. The analysis was completed on the 30 min segment load profile cluster results for eigenvectors 1-4,
below the clustermap for eigenvector 1 (n_clusters = 150) is shown below (Figure 29). Cluster 60 & 86 are
close to one another based on euclidean distance, thus suggesting that the data shape is similar for the 30
min segments and packages 63, 50, and 51 are close to one another based on euclidean distance,
suggesting that these might be at the same site, operated by the same customer for the same application.
Python functions were constructed to provide users means of finding the most similar packages based on a
selected package, time segment, and number of clusters.

37

Figure 27. In-depth temporal analysis of PSN 34. All plot color coded by day of week. Top left: eig1 over one
week. Top right: eig2 over one week. Middle left: eig1 over one day. Middle right: eig2 over one day. Bottom
plots: eig2 over eig1 for day of week (Mon, Mon-Tues, Mon-Weds, etc.)

38

Figure 28. 3 and 6 month analysis of PSN 37 (10 minute data). Each datapoint is color by day of week. Top
left: eigenvector 1 over 3 month time span. Middle left: eigenvector 2 over 3 month time span. Bottom left:
eigenvector 2 over eigenvector 1 for 3 month time span. Top right: eigenvector 1 over 6 month time span.
Middle right: eigenvector 2 over 6 month time span. Bottom right: eigenvector 2 over eigenvector 1 for 6
month time span.

39

Figure 29. Principal Component 1 Clustermap. X-axis: package serial number. Y-axis: cluster number. The top
dendrogram shows hierarchical clustering of the different packages, and the left dendrogram shows
hierarchical clustering of the different clusters. Darker blue corresponds to greater density of times segments

40

Tableau Dashboards
The following Tableau dashboards were developed to allow for exploratory data analysis. Three

interactive dashboards were developed to allow team members and domain experts to visualize the data:
Top 5 Principal Components​, ​Reduced vs. Raw Datasets, and Clustering of the Reduced Dataset.

Top 5 Principal Components
In order to identify potential turbine functions associated with each of the principal components, a

side by side bar chart was created. The tags for each principal component can be sorted by most to least
important for a particular principal component. Furthermore, they are color-coded by measurement type.
Using this visualization we were able to determine the features which make each each eigenvector, as
noted above.

Figure 30. Top 5 Principal Components Visualized through Tableau

Reduced vs. Raw Dataset
In order to identify relationships between tags and eigenvectors, two line charts were developed to

provide a view on the top n eigenvectors contributing to a particular package, as well as the raw data
showing the trend of tags over time for each package. For deeper exploration, users can first go to the Top
5 Principal Components dashboard, determine which tags they are interested in, select the tags on the
Reduced vs. Raw Dataset dashboard and also specify the eigenvector of interest and then have an
understanding of how tags vary with time and might affect the eigenvector. Furthermore, by default all
timestamps are shown but an individual can explore different daily, weekly, etc. trends of interest by
specifying a time range, as can be seen in the figure below. This dashboard was used as an early
prototype of what evolved into our JavaScript dashboard (see Exploratory JavaScript Dashboard)

41

Figure 31. Reduced versus Raw Dataset Visualized through Tableau

Clustering of the Reduced Dataset
In order to test different clustering algorithms, cluster parameters, and validate clustering results, we

have developed a dashboard which shows the different quantitative values (top 20 features of the PCA by
Fleet Model 1 reduced dataset) within a parallel coordinate visual where each line is associated with a
particular timestamp. This visualization intends to provide an quick means of visualizing timestamp clusters
within a particular package.

Figure 32. Clustering of the Reduced Dataset Visualized through Tableau

42

Exploratory JavaScript Dashboard

An interactive JavaScript dashboard was built to allow users to map the raw machine data to
and from the PCA reduced space. Users can select packages of interest, raw features of interest
(plotted on the top) and eigenvectors as axes to see the reduced data (below). When selecting raw
data in the timeline, a green graph animation is created in the reduced space plot to explore changes
over time. When one highlights groups of points in the reduced space, the corresponding raw data
points are highlighted in red. Additionally, the PCA reduced data set has been colored by time of day,
where brown points have evening timestamps and blue/green points were recorded during the day.
Examples are included below.

Figure 33. Javascript dashboard. ​Clusters in the PCA data are shown to correspond to operating modes in
the raw data.

Figure 34. JavaScript dashboard. ​Outliers in the PCA data are shown, in some cases, to correspond with
extreme values in the raw data.

43

Our Product
Our product is a scalable pipeline for the detection of transients in Solar Turbine’s machine data.

The product is cyclical because each of the elements form a feedback loop. As domain experts validate our
results, the process can be repeated. The components are as follows:

Figure 35. Our Product

Raw Data Query
All data is stored in a PostgreSQL database. The data size did not require a distributed storage

solutions, so each of use and cost were primary factors in determining storage solutions. As such, the 1
hour and 10 minute data is currently hosted on an AWS EC2 t2 large instance.
Data is accessible using the following API:

Anonymized Data

Import Interface
import_csvs(​directory, destination_table, drop_create_table​)

Query Builder
Filtering

.not_null(column_name)

.psn(serial_number)

.model(model_number)

.frequency(f) # ‘1hr’ or ‘10min’

.min_time(timestamp)

.max_time(timestamp)
Projection

.select(feature_list)

44

Exporter
.save_df(df, filename)
.save_pkl(obj, filename)
.save_fig(fig, filename)

Programmatic access enables interfaces that abstract away storage details. Coding against the

abstractions proposed above allows the underlying storage to change as needed for scalability. For more
details on our raw data query process, see the Data Pipeline section.

Data Transformations
Data Transformations refer to all measures taken to manipulate our raw data into formats that can

be used for our end goal of identifying transient states in Solar Turbines’ packages. This includes data
preprocessing, dimensionality reduction, segmentation, clustering, statistical analysis, and label generation,
as shown below. For a detailed explanation of all methodologies employed, see the Modeling section.
Additionally, scalability measures for transformations are detailed in the Pipeline section.

 ​Figure 35. Data Transformation Overview

Derived Feature Cache
Data transformation output can be stored flexibly depending on use case. Local storage and AWS

S3 buckets were explored as options. See the Pipeline section for more details.

Transient Ensemble Scores
Labels generated from various data transformations are used to assign transient scores, which can

be mapped to the raw data by timestamp and package serial number identifiers. They are combined,
weighted and evaluated against a transient threshold, thus generating ensemble labels. See Modeling
section.

45

Visual Validation
Our lack of domain expertise and labelled data requires us to rely heavily on our domain experts for

model validation. We built a user interface for domain experts to visualize, ​interpret, validate and annotate
our results. See User Interface section.

Modeling
Model was built using Model2 10-minute data.​ ​The generic pipeline is as follows:

Figure 36. Data Transformation Pipeline (Procedure Used for Modeling)

Data Preprocessing
Preprocessing steps are as follows:

● Columns set as multi-indices: ‘psn’, ‘timestamp’
○ Package serial number and timestamps are unique identifiers to index any record in our

dataset
● Ignored columns: ‘​id','SUM_ENR','SUM_ENG_ST','SUM_ENG_H','SUM_ESN'

○ ‘SUM_ESN’ and ‘id’ were ignored because they are index-type columns
○ 'SUM_ENR', 'SUM_ENG_ST', and 'SUM_ENG_H' were excluded because they are

incrementors and not physical readings
● Drop sparse packages: psns 44, 52, 54, 70

○ These packages were dropped due to low counts of records and data incompleteness

46

● Drop sparse features: None
○ Any features that had a percentage of nulls greater than a defined threshold are dropped.

For the Model2 10 minute dataset, no features were > 10% null.

Raw Feature Labeling: Power Jumps
One of the raw features in our data set is power. Transients can be defined as a sudden change in

load, or power output. As such, we used one of our statistical functions, henceforth referred to as “Power
Jump”, to identify sudden spikes or dips in this raw feature. Specifically, all points where power changed by
more than 25% were labeled transients. For example, the figure below shows power over time for PSN 57
in blue and timestamps where power changed by more than 25% as spikes in yellow.

Figure 37. Power (blue) and Power Jump labels (yellow) over time for PSN 57

In addition to providing insight into when transients occurred, this metric provides a baseline for
comparison against other transformations. This metric is referred to as “Power Jumps” throughout this
report and in our user interface.

Dimensionality Reduction
Principal Component Analysis (PCA) was used both to reduce the dimensionality of our data and to

better understand the data. Prior to implementation, each feature was first standardized to have a zero
mean and unit variance using the sklearn’s StandardScaler transformation. This was needed as in PCA we
are interested in the components that maximize the variance. If one component varied less than another
because of their respective scales, PCA might determine the direction of maximal variance more closely
corresponds with the feature with bigger scale. After this, PCA was applied using sklearn’s PCA
implementation. Essentially the data was projected into an alternative basis to reduce the number of
features while maintaining maximum variance. For more information on the underlying math and PCA
algorithm, see Jolliffe 2002 . 6

6 "Principal Component Analysis | I.T. Jolliffe | Springer." ​https://www.springer.com/us/book/9780387954424​.
Accessed 20 May. 2018.

47

https://www.springer.com/us/book/9780387954424

HDBSCAN Clustering

Model Selection
The team initially considered a variety of unsupervised clustering models, including but not limited

to Spectral Clustering, Affinity Propagation, Mean Shift, Agglomerative Clustering, and DBSCAN. However,
due to hardware requirements and performance concerns, the team chose to use HDBSCAN ​(Hierarchical
Density-Based Spatial Clustering)​. The increased capabilities and increased performance compared to
other algorithms, aside from K-Means, made it extremely useful. Specifically, HDBSCAN is an
improvement upon DBSCAN that converts it to a hierarchical clustering algorithm, then extracts a flat
clustering based on the stability of clusters . It also features memory caching to further speed up clustering. 7

Figure 38.HDBSCAN Clustering. Orange, Green, and Blue clusters are different operating states. Transients
do not belong to any operating modes so Purple points, which are labeled “noise” by HDBSCAN, are used for
detecting transients

Parameter Tuning
Iterations of HDBSCAN were evaluated using various combinations of input parameters. HDBSCAN

has two main parameters which affect the resulting clusters: min_cluster_size and min_samples.
Min_cluster_size is a restriction on the size of the cluster whereas min_samples determines the minimum
number of datapoints required to be considered a cluster. A feature of HDBSCAN is that if certain
datapoints are discovered to not belong to any cluster, they are labeled as “noise”. Because the number of

7 "How HDBSCAN Works — hdbscan 0.8.1 documentation."
http://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html​.

48

http://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html

normal operation datapoints vastly outweighs the number of transients, we tuned HDBSCAN to cluster
operating modes and “noise” labels were called transients.

We validated results from different combinations of parameters against the Power Jump results and
then calculated an accuracy score based on the number of non-transients correctly identified. Accuracy
scores were originally calculated based on correctly identified transients only (as defined by the Power
Jumps metric). However, we immediately noticed cases where certain parameter values would result in
every datapoint being labeled as a transient, and thus giving perfect scores. Even scenarios where not all
datapoints were labeled transients, the count of transients classified by HDBSCAN would be greater by one
or two orders of magnitude. To account for this, we filtered out parameters which resulted in overly large
numbers of transients classified and then ranked parameter combinations. Parameter combinations were
ranked using the process below:

1. Transients found by the Power Jump function were mapped to the corresponding indices

classified by HDBSCAN and an f1 score was calculated.
2. Similarly, transients found by HDBSCAN were mapped to the corresponding indices

classified by the Power Jump function and another f1 score was calculated.
3. These two scores were multiplied together and ranked from highest to lowest score.

By filtering and scoring both ways, we account for false positives classified by HDBSCAN and are

left with tuning parameters min_cluster_size=20 and min_samples=80. A few packages were required
more specialized tuning and so different parameter combinations were derived for those.

Extreme Value Labeling

Model Selection
Transients were first identified during the EDA phase in eigenvector0 and eigenvector1. While they

are visible in both reduced features, they are more pronounced in eigenvector0. This intuitively makes
sense because the main contributors to eigenvector 0 are related to load (power, t5, etc).To identify sudden
changes in this parameter, we relied on our statistical function to find step size jumps in our features over
time. This function inputs a rolling window and calculates a rolling mean and rolling standard deviation for
that time period. It also requires users specify a z-score threshold, the number of standard deviations
outside of the mean used to delineate transients from normal operation.

Parameter Tuning
Both the rolling window and z-score threshold were tuned. Lack of true labels required us to visually

assess the accuracy of this portion of the model. For fine tuning the z-score threshold, a rolling window of
24 hours was used. For fine tuning the rolling window parameter, a z-score threshold of 5 was used. In
Figure 39, the blue line shows eig0 over time for PSN 55. The yellow line captures transients identified by
the step-size function, where the spikes correspond to step size jumps in power, using the various z-score
threshold and rolling windows.

49

Figure 39. LEFT: Fine tuning the z-score threshold. All figures show PSN 55 with a 24-hour rolling window
and share a common x-axis (time). Top: z-score threshold = 8 standard deviations. Some obvious peaks are
missed, particularly in 2016-06 and 2017-03. Middle: z-score threshold = 5 std deviations. Slightly sensitive
but all peaks are labeled transients. Bottom: z-score threshold = 3 std deviations. Many peaks are incorrectly
identified to be transients. RIGHT: Fine tuning the rolling window threshold. All figures show PSN 55 with a 5
std deviation threshold and share a common x-axis (time) Top: rolling window = 10 hours. Some obvious
peaks are missed, particularly in 2016-06 and 2017-07. Middle: rolling window = 24 hours. Slightly sensitive
but all peaks are labeled transients. Bottom: rolling window = 10 days. Missed peaks in 2016-12.

Analysis was applied to all Model 2 packages, and a rolling window = 24-hours and a z-score
threshold of 5 standard deviations was used for our final model. These input parameters are not
hard-coded can be tuned based on feedback from domain experts

n-Minute Segmentation & Clustering (Kink Finder Labeling)
A third method of identifying extreme values in the reduced space was developed during EDA in the

process of summarizing and categorizing package behavior. The classification occurs in three steps,
starting with an eigenvector coefficient over time.

- Partition the coefficient data into 20 minute segments
- Cluster the 20 minute segments
- Apply binary labels to the clusters based on a percent change of the cluster’s mean value.

The first step provides a temporal context of comparison. Rather than just looking at a single value

at a single point, look at the change in value between points. The second step categorizes that change and
the third step uses a simple calculation to label whether each category has relatively stable values or not.

50

Figure 40. Sample 20-minute cluster plots. The center line is the cluster mean and blue highlights +/- 2
standard deviations. Two distinct normal operating modes are seen (high and low flat lines). Two more
variable clusters are labeled as transients (kinked lines)

This model has the added benefit of providing a convenient metric for comparing package
operational “modes”. With the change in state across each 20-minute segment categorized, summarizing
how a package is behaving becomes easier, both across the lifetime of a package and between packages.
See Results and Interpretation section for further work on Package Similarity.

Model Tuning & Variations

Segment Length
The time series segmentation was originally run on 24-hour ranges to get an idea of how packages

behave on a daily basis. Once the goal of labeling transients became clear, 60, 30 and 20-min ranges were
generated. Both 60 and 30-minute segments were generated starting on the hour and finding groups of 3
and 6 data points as applicable. The 20-minute segments were generated by pairing data points with the
subsequent point, if available. During all segmentation processes, only complete time segments were kept.
This resulted in the 20-minute segments providing much more data for the clustering algorithm to work on.
In addition, since all points in a cluster receive the same label and transients are typically 10 minutes or
less in duration, the 20-minute segments were best for labeling transient points as specifically as possible.

Table 13. Model2 10-minute data, Value Counts of Complete Records Segmented into Various Time Intervals

Segmentation Complete Segments Timestamps Labeled Clean Data Set Coverage

12-hour 20,798 1,497,456 93.45%

60-minute 265,741 1,594,446 99.51%

30-minute 533,007 1,599,021 99.79%

20-minute 1,600,590 1,602,238 99.99%

Clustering Algorithm
The time segments were then fed into the K-Means clustering algorithm. The number of clusters

was run between 5 and 150 to generate statistics in order to optimize. The plot of the sum of the square
distances between points and their cluster centers (inertia) is shown below (Figure 40). Based on those
results, n_Clusters = 25 was chosen. Visual validation in the dashboard confirmed those are fairly clean
clusters. K-Means was chosen as a computationally efficient algorithm for the task.

51

Figure 41. Cluster analysis. Inertia versus number of clusters (x-axis = n_clusters, y-axis = interia)

Kink Threshold
The final step to these “Kink Finder” labels was to determine the percent change between the mean

minimum and mean maximum points in each cluster. The transient/not transient labels were generated
comparing that change to a static threshold, found to be 0.4 where the change is at least 0.1 of the
difference in the global minimum and maximum values. Visual validation also confirms this to be an
accurate threshold.

Ensemble Scoring
Each of the approaches assigns boolean transient scores to every datapoint, with 0 being normal

and 1 being transient. Boolean scores allow for easier comparison for different combination schemes to
create the best ensemble score. Individual scores were combined to create a baseline ensemble score.
This score is compared to a transient threshold threshold value. Data points with ensemble scores greater
than or equal to the threshold are labelled as transients, and those below the threshold are labelled as
normal in our ensemble model. Due to the lack of true labels, model validation requires domain expertise.
Additionally, the Power Jump labels are used as both a feature in our ensemble model and a metric by
which the labels are evaluated. This is a known limitation in our process, as Power Jumps are not entirely
ground truth. Using Power Jumps to fine tune our model would led to the Power Jump feature being
weighed to 1 and the other metrics weighted to 0. For this reason, the ensemble labels were not fine tuned:
all inputs were equally weighted and a threshold was determined to be 2 (out of a possible 4). However,
upon review by domain experts, different thresholds and weighting may be applied to improve results. See
the modeling section for current methodology and scores.

52

Combining all of these methods, our final model used to identify transients is summarized below:

Figure 42. Final Model

User Interface

Overview and Purpose
Our primary goal is to allow users to ​visualize, interpret and annotate our generated transient labels.

Additionally, we’ve included functionality to explore ​our ​transformed datasets in the context the raw data,
and provide insight regarding the similarity of operation between packages. The layout and components of
the interface is shown below:

Figure 43. User Interface Screenshot

53

Libraries Used
Our interface was built using HTML, CSS and the following ​libraries:

Table 14. Libraries used for User Interface

Language Name Use Case

JavaScript D3.js data binding

JavaScript Momentjs timestamp manipulation

JavaScript Underscorejs data filtering

JavaScript D3-hexbin scatterplot aggregation

JavaScript Simplifyjs svg performance

CSS/JavaScript Bootstrap styling

CSS FontAwesome icons

Features and Functionality
The user interface is split into 3 main sections - the reduced space, load profiles, and time series

plots. Each section interacts with the other two through data selection and highlighting. Presenting our
model results in this way allows domain experts to easily select subgroups of data points for annotation.

Reduced Space
The reduced space section is a scatter plot of eigenvector coefficients. Points are binned into

hexagons for scalability and hexagons are shaded by the number of points in the bin. The hexbins are
colored using a monochromatic blue scale, were darker luminescence implies greater density. Orange dots
signify the presence of transients in these bins, and green dots signify that at least one point in these bins
is currently selected. Left clicking on a bin selects all data points in the bin. Right clicking anywhere
deselects all data points. Hovering over a bin gives details on the makeup of the data points within the bin.
Zooming and panning is possible with a mouse. Hexagon radius is scaled with the level of zoom, providing
finer grained distributions as a user zooms in. X and Y-axis may be set to any of the top 5 eigenvectors.

54

https://d3js.org/
https://momentjs.com/
http://underscorejs.org/
https://github.com/d3/d3-hexbin
http://mourner.github.io/simplify-js/
https://getbootstrap.com/
https://fontawesome.com/

Figure 44. Reduced Space of the UI for PSN 51. Blue shading shows data density. Orange dots show hexbins
which include transient labelled points. Green dots show hexbins with currently selected points. Hover tool
allows users to see the composition of each hexbin. This example only contains one data point, which is both
labelled as a transient and selected.

Figure 45. Reduced Space of the UI for PSN 51. Zoomed in view of bottom right cluster in Figure 44

Load Profiles
Load profiles are fleetwide clusters of partitioned eigenvector 0 coefficients. 20-minute clusters and

12-hour clusters are available. Cluster means are plotted in gray and two standard deviations are plotted in
blue. Package utilization percentages are printed below each cluster. Left clicking a cluster selects all data
points belonging to that cluster. Right clicking anywhere deselects all data points. When a cluster contains
a selected data point it is outlined in bright green. Adjacent clusters are outlined in dark green.

Package Similarity
Package similarity rankings were generated based on packages’ cluster distributions. When a

package is selected, links to the top five most similar packages are listed.

55

Figure 46. Operating Load Profiles Section of the UI for PSN 51. The two kinked clusters are selected.
Similarly operating packages are linked under the heading

Time Series
The time series plots show the raw data and derived eigenvector data across time. Times labeled

as transients are highlighted in orange. Selected times are highlighted in green. All plots can be zoomed
and panned simultaneously using a mouse. Hovering over the plots gives plot values and any applicable
labels. Left clicking selects data points. Right clicking clears all selected data points.

Tag Weights
All of the raw data tags are available for plotting. The ‘machine tags’ selection window includes two

bar plots for each tag. These represent the tag’s importance (eigenvalue) to the eigenvectors selected in
the reduced space. These plots provide domain experts with hints at what raw data may contain values
contributing to eigenvector spikes.

Figure 47. Time Series Section of the UI for PSN 69. Features plotted over time are eig0, power, and t5_5.
Transients are highlighted in orange and selected data points and highlighted in green.

56

Annotations
Each of the sections above provide different ways to select different groups of data points. Once

data points are selected, the annotation button can be used to bring up a data entry window. The group of
selected points can be assigned a transient/not-transient label along with a short note. Annotations can be
exported to a csv file by clicking the annotation download button.

Figure 48. Annotation buttons and windows. Clicking on the green button (top left) allows users to
annotate selected data points. A pop out window allows users to select Transient or Not Transient
and add notes. Clicking the save button (top right) allows users to save annotated labels to csv.

Audience
Our target audience is currently limited to domain experts. Due to the specificity of the tags and

machine configurations, our product is meant to be consumed by Solar Turbines’ engineers.​ Our ultimate
goal is to build an interface for domain experts to be able to annotate/validate our findings, so that they
could be fed as a training set into a machine learning model to predict transients.

Data Pipeline

Scalability and Robustness Requirements
Our pipeline is built to analyze high dimensional sensor data. It includes a raw data store,

in-memory computation, an export store for saving model results and information, as well as a user
interface for reviewing results. Each component is comprised of an abstract interface wrapped around

57

physical or virtualized infrastructure and is designed for that infrastructure to change along with data and
computing requirements.

The current 5.75 GB dataset does not require a distributed environment for these components.
However, we estimate the data for Solar Turbine’s entire fleet is over 100 times the size of our current data
set. Thus, a plan to scale each of the pipeline’s components is necessary to consider productizing our
model.

Our test environment includes a t2.xlarge (4 vCPU, 16GB RAM) AWS EC2 instance for raw data
storage and local storage for pipeline exports. Model training has been done on various on-premises
machines, from consumer laptops to a 54-core, 256GB server. Given the proprietary nature of the data and
timeframe of the project, the user interface is hosted locally for security.

Figure 49. Data Pipeline

Raw Data Storage
The current data set includes two years of data for 72 turbines and totals 5.75 GB. Any production

system would need to handle Solar’s entire fleet of approximately 2000 connected packages with ten years
of data, or an estimated 800 GB.

A MachineDataStore interface to interact with the raw data storage. Simple filters, such as package
serial number and timestamps are supported. Generally, however, our model requires the entire raw data
set be returned.

The current environment uses PostgreSQL on a t2.xlarge EC2 instance. Postgres has been shown
to handle multiple terabytes on a single server when limited transactional access is needed. t2.xlarge
instances have .74 Gb/s network speeds off of AWS networks and 5 Gb/s speeds to other EC2 instances.

While we believe Postgres on EC2 handles the scale of the data appropriately, it provides a single
point of failure for our pipeline. To improve robustness, a distributed data store should be used. Solar
Turbines uses HDFS internally, so that is a natural solution. Implementing the MachineDataStore interface
for HDFS would allow it to be used as a replacement, although requiring HDFS-capable data

58

transformations. Alternatively, AWS RDS could be used as an expensive replacement if a scalable
relational database solution is required.

Data Transformations
Data Transformations are the heart of the pipeline and represent the greatest threat of bottlenecks.

Each step of the pipeline is defined as a Transformation object that takes an input dataframe and outputs a
new, transformed dataframe. Passed dataframes all share Package Serial Number (PSN), and timestamp
indexes.

Many of the data transformations we use suffer from high algorithmic complexity. Eigenvector
decomposition is O(n​3​), K-means has a worst case complexity of ​O(n​(k+2/n_features)​), and HDBSCAN performs
just under O(n​2​). While HDBSCAN does perform slower than K-Means, the difference only becomes
significant in very large datasets and even then it is only second to k-means and outperforms notable
clustering algorithms such as DBSCAN (which it is derived from) and Fastcluster.

Figure 50. Performance comparison of clustering algorithms 8

In a single-machine deployment, increasing the memory will allow larger datasets to be run through

the pipeline, though, because Python is generally single threaded, performance will slowly degrade. With
this in mind, we’ve developed several approaches for improving performance and scalability. Data
transformations are organized in a tree structure. Each branch can be parallelized using multiple cores on
the same machine or on different machines using a distributed message queue. Given a large increase in
data or a faster runtime requirement, individual transformations could be parallelized further using Spark.

8 "Benchmarking Performance and Scaling of Python ... - hdbscan."
http://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html​. Accessed 8 May. 2018.

59

http://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html

Figure 51. The pipeline is a tree-structure of these Transformation objects

Derived Feature Cache
In addition to computation time, each transformation has 4 events where result exports can be

triggered. By default Python executes in a synchronous environment so any disk writes will hold up the rest
of the pipeline. For our current data set and export requirements, this is a manageable lag (outlined in
Evaluations and Results section). However, asynchronous exports would need to be implemented for a
growing dataset. The current strategy utilizing local storage for exports has been best for development,
ease of use, and speed. AWS S3 would be used as the export store when scalability is needed. As
mentioned earlier, Solar Turbines uses HDFS internally, likely the best fit for their production use. Similar to
the MachineDataStore interface, exports are handled using a simple key/value ExportStore interface.

User Interface
Our end product includes a user interface for annotating labels generated by our model. The

interface is designed for domain expert use and efficiently reviewing large amounts of data easily. ​We are
currently implementing this as a proof of concept, with all data stored locally. A robust solution would
include a horizontally scalable and secure web api to serve raw and derived features from the data set in
an on-demand capacity. This would provide the possibility of data aggregation near the data source to
reduce the amount of memory needed on the client. Although the number of domain experts requiring
access to the user interface is expected to be limited, scalable frameworks include AWS Elastic Beanstalk
and Kubernetes. Due to our dataset size and use restrictions, these implementations are outside the scope
of this project.

Evaluation Strategy and Results
Our model utilizes in-memory computation as well as heavy disk access for writing model output.

Performance will be measured by total run time and available virtual memory. For each transformation,
profile records are created before the fit function, after the fit function, before the transformation function,

60

and after the transformation function. We are assuming the raw data fed into the model is cached locally,
the default behavior for MachineDataStore.

A sample pipeline was used and included data preprocessing->PCA->30min
partitioning->KMeans->Flatten partitions. Profiling was done on a consumer-grade laptop with an Intel
i7-6700HQ chip, 4 cores, and 16GB RAM.

K-Means labeling was the most resource intensive step in this sample pipeline, followed by the time

partitioning transformation. Similar profiles were seen on higher RAM servers. Disk writes proved to be less
costly than initially estimated.

Figure 52. Execution Time Across Pipeline

61

Figure 53. Execution Time Across Pipeline

Results and Interpretation
Our results offer insights into Solar Turbines’ machine data. While much of what we uncovered

during exploratory data analysis went unused, we narrows our focus on three avenues through which our
product offers insight into the dataset: transients, principal components and package operational similarity.

Transients
The primary objective of our project has been to identify transient states in our dataset. We’ve

explored the efficacy of each our transformations compared to a known method for detecting transients,
25% changes in power. However, it must be noted that these power jump ‘labels’ are not ground truth.
Domain experts emphasized that no one method is universally correct. The different methodologies have
unique benefits and drawbacks. While a change in power is a simple model, it is limited and does not catch
all transients. It is also subject to sensor errors. The methodologies that use our eigenvectors, on the other
hand, and more complex and difficult to interpret. However, because they’re comprised of multiple features,
they’re more like to catch changes that a single feature might miss.

Additionally, when a package is changing from conventional to low emissions mode, a transient
state occurs. However, because the power output is not changing, the transient event is not captured by
the power jump labels. An example of this behavior is shown below.

Figure 54. Transient state occurence without a jump in power.

Given this known limitation, results inconsistent with power jump labels do not necessarily mean that our
model’s labels are wrong. If a transient label does not align with power jumps, is unclear whether it is a
false positive (not a transient) or a true positive (a transient that power jump did not capture). For this
reasons, we built a UI for domain experts to validate results and assess accuracy.

Results comparing each metric to power jumps are as follows:

62

HDBSCAN Cluster Labels
As mentioned in the modeling section, accurately clustering datapoints using HDBSCAN primarily

relies on tuning two different parameters: min_cluster_size and min_sample size. We explored
combinations of these two parameters and discovered that in general, both larger min_cluster_sizes and
min_samples led to HDBSCAN clustering too many datapoints as transients. Due to the requirement that
they validate results, domain experts requested we minimize false positives and parameters were tuned
with that consideration. On average, we achieved an f1 score of 0.10 in detecting transients with
HDBSCAN and a​ ​f1 score of 1.00 in detecting normal operation.

Figure 55. Classification report for StepSize function on Eig0

We split these scores since the amount of normal operation outweighs the number of transients. We
believe our low f1 score in classifying transients is due to our method of verification against Power Jumps
and HDBSCAN is simply capturing different types of transients not detectable by simply just measuring
Power Jumps.

Eigenvector0 Step Size Labels
Because our first principal component is comprised of features related to load, we applied a

step-size function to find spikes or dips in eig0. We then compared the labels we generated to the 25%
changes in power. As with the HDBSCAN clustering results, we found high accuracy with our normal
operating data points. Our transients, again, do not line as well with our Power Jump labels.

Figure 56. Classification report for StepSize function on Eig0

The reason for this low f1-score score for transient classification is not that our StepSize function is
incorrect. Rather, it flags transient states that the Power Jumps metric misses. The example below shows
PSN 49. Here, a transient state is clearly visible in t5_5 (bottom) that is mirrored in eigenvector 0 (top) but
not in power (middle). This was verified by domain experts to be a transient event where the package was
shifting emissions modes.

63

Figure 57. Eig0 StepSize labels (orange) show a transient event (verified by the t5 tag and domain experts)
that is not captured by Power Jump labels.

Kink finder labels
We are quantifying the results of our PCA -> segmentation by time -> k-means clustering ->

statistical analysis (kink finder). Below is a classification report for the 20 minute clusters. While it performs
well for our normal operating class, we are working to improvement accuracy on our transient class.

Figure 58. Classification report for KinkFinder on 20 minute k-means clusters

Power jumps labels
As Power Jumps labels were both a feature in our ensemble model and our best metric for

comparison to ground truth, we did not quantify accuracy. It is known a limitation in our ability to evaluate
the model, and would show 100% accuracy when compared to itself.

Ensemble labels
Our ensemble model labeled points where two or more of scorers identified transients.

Figure 59. Classification Report for Ensemble Labels

64

While ensemble modeling has outperformed its individual components, true accuracy is unknown. Review
with Solar Turbines’ domain experts has validated our results. Points not mapped to changes in power has
been positively identified as transients, suggesting higher accuracy than baseline metrics shown above.

Principal Components
Many of our methods for detecting transients utilized principal component analysis on our raw

features. Doing so gave us insight into our dataset by allowing us to decipher which raw features have the
most variance and thus influence on our model. Findings are as follows:

Table 15. Principal Components Key Findings (Model 2)

Principal
Component

Primary Contributing
Features

Percentage of Variance
Explained

Cumulative Percentage of
Variance Explained

1 Load (Power output):
temperatures, power

21.35% 21.35%

2 Controller signals:
command, position

10.59% 31.94%

3 Pressure 7.36% 39.30%

4 Unclear 6.45% 45.75%

5 Ambient Temperature 5.37% 51.12%

This information is built into our user interface. When users click on the “Machine Tags” button, a

pop up window appears. This window contains, tag names, their measurement type and associate
subsystem, as well as brief descriptions. Additionally, for each raw feature, there is a bar chart
corresponding to it’s eigenvalue for each of the eigenvectors, where larger values correspond to higher
influence. Users can select and plot these raw features with some context as to how they correspond to the
eigenvectors visualized in the reduce space portion of the dashboard.

Figure 60. UI showing raw features’ details and contributions to principal components.

65

Package Similarity
In our JavaScript dashboard, we display package-to-package similarities using cluster results based

on 20 min segments, where n_clusters = 25. Using % of total usage (or count of 20 minutes segments per
PSN in each cluster divided by total number of segments in the PSN), we generate similarity matrices
based on euclidean distance. Similar packages suggest that the packages were operated by the same
customer for the same application. Below we are showing the top 3 most similar packages to a given
package using this approach.

Table 16. Top 3 most similar package for each package using 20 min segment, n_cluster = 25 cluster results
for model 2. Most similar 1 denotes euclidean distance between the packages is smallest.

Obstacles

Pivoting
Our initial pursuit was to detect and differentiate anomalies in Solar Turbines’ machine data.

Despite finding hundreds of thousands of statistical outliers, we had difficulty identifying true anomalies due
to the lack of labels. Additionally, we had no ability to differentiate anomaly subtypes. We pivoted to
transient states, which, though a normal part of gas turbine operations, were visible as extreme values in
our features. Unfortunately, this change in direction occured two thirds of the way into the project. Much of
our exploratory data analysis and approach was structured around anomaly detection. Given the time and
data limitations, rather than building a workflow to identify transient states, we had to adapt our work to this
different target.

Labels and Data Interpretation
The biggest obstacle faced while trying to find meaning in this high dimension time series data set

was our lack of labels. Without ground truth, we could not establish a foundation from which to build a
predictive model. Additionally, we faced difficulties interpreting our findings and exploratory analysis, as gas
turbines are extremely complex machines and no team members have background expertise in mechanical
engineering. Some findings and correlations throughout this project which we believed to be important
discoveries were later found to be already well known to domain experts.

Future Work

Transient Prediction
As mentioned, we generated a labelled dataset that classifies normal operating from transients in

turbine machine data. With verification from domain experts, we would then have a sufficiently large set of
labels to then begin work to predict transients. By being able to predict transients, it would be possible for

66

Solar Turbines to better understand load patterns and wear of the turbines without having to shut them
down and manually inspect, thus saving hundreds of thousands if not millions of dollars in unplanned
downtime.

User Interface Gamification
In order to encourage use of the transient labeler, we would explore the idea of making the

dashboard into a minigame. By presenting itself as a more of a game than a task, the labeler would
become more engaging and fun to use. Incorporation of a leaderboard and hidden easter eggs would
further improve enjoyment and increase user consumptions and thus verified labels.

Shutdown Analysis
Unplanned shutdowns occur when gas turbine’s programmable logic controller is triggered to turn

off the package. They are due to various combinations of operating conditions within the package. While
they are not directly mappable to the machine data and difficult to interpret (i.e. shutdowns can happen for
any numbers of reasons, not just engine failure), we hypothesize that they can be mapped to transient
states. That is, as transient states are known to be strenuous and volatile events, they can trigger
shutdowns. We intended to investigate whether or not there was a correlation between shutdowns and
transient states. Unfortunately, unplanned shutdown data was not authorized by Solar Turbines. However,
we attempted to make our own, using the engine starts feature of our Model 2 raw data. The ENG_ST tag
is an incrementer that counts the number of times an engine was turned on. We took the data points where
the ENG_ST value increased and assumed that the timestamp immediately prior was linked to a shutdown.
We then compared these shutdown labels with our delta power transients, eigenvector 0 step size jump
transients, and our first 11 eigenvectors, shown below.

Figure 61. Heatmap showing correlation between eigenvectors, transient labels and shutdown flags

67

This above does not show a strong correlation between delta power transients (pow_transients) and
shutdowns (shutdown_flag). However, we believe the following confounded these results:

● Missing data
○ Shutdowns may have occured while package was operating below onload conditions
○ Shutdowns in dual fuel engines may have occured while the package was running on liquid

fuel
○ Shutdowns may have occurred during time intervals where data is missing for other reasons

(connectivity issues, etc)
● Planned versus unplanned shutdowns

○ Using starts as an indirect measure of shutdowns does not allow us to differentiate planned
versus unplanned shutdowns. Users may have simply turned off the machines any number
of reasons (planned) as opposed to the machine shutting itself off (unplanned).

In the future, given a clean set of unplanned shutdowns labels for a packages, we could re-evaluate

the correlation between transients and shutdowns and ultimately, assuming there is a correlation,
differentiate transients that trigger shutdowns from those that do not.

Integration at Solar Turbines
Detailed in Data and Environment Data Preprocessing, extensive efforts were taken to sanitize the

data before it was moved off of the Solar network. The overall process and measures taken at each step is
detailed below:

Figure 62. Current non-integrated process.

If we were to integrate our pipeline with Solar’s, the anonymization processes would not be
necessary. Nor would we need to move data off of the Solar network. Built with integration and scalability in
mind, the transient detection pipeline is robust enough to work on the non-sanitized versions of the same
data. Additionally, to ensure the same data input quality and outputs, the pipeline would require the same
filtering and normalization procedures. An integrated product with Solar Turbines would dramatically
simplify the process, as shown below:

68

Figure 63. Integrated process.

This is a simplified version of the work and coordination efforts required to integrate our product with
Solar’s data ingestion and storage processes.

Conclusion
Our product serves as a first pass at labeling transients in Solar Turbines’ machines. In addition to

identifying transients, we add value by providing insight into the data (which features are most indicative of
transition states, etc) and context to our dataset (which packages are operated similarly, etc). With these
objectives in mind, we’ve built a dashboard that effectively communicates our findings and allows domain
experts to annotate our labels. This creates a feedback loop to the model to for improving future accuracy.
Additionally, our pipeline can be integrated with Solar’s network with minimal required changes. Such
information can be invaluable to our audience, Solar Turbines engineers, and can ultimately influence
Solar’s alerting policy so that customers can benefit as well.

69

Team Roles and Responsibilities
● Garrett Cheung (Data Engineer)

○ Solar-side coder (anonymization/data preprocessing and publishing)
○ Statistical Methodologies
○ HDBSCAN clustering
○ Gap analysis
○ Modeling

● Michael Galarnyk (Bookkeeper)
○ Kept track of expenses (AWS fees, etc)

● Jared Goldsmith (Record keeper)
○ Maintained our github repositories
○ Exploratory Data Analysis
○ Data Pipeline
○ User Interface

● Jillian Jarrett (External Team Coordinator)
○ Liaison between Solar Turbines and UCSD/SDSC
○ Reported progress and correspondence with advisors
○ Exploratory data analysis
○ Modeling
○ Preliminary Shutdown Analysis

● Orysya Stus (Internal Team Coordinator)
○ EDA Tableau Dashboards
○ Cluster analysis
○ Package similarity analysis

70

References

1. "Gas Turbines - Products | Solar Turbines."
https://www.solarturbines.com/en_US/products/gas-turbines.html​. Accessed 22 May. 2018.

2. "Sigma Labs Wins Contract from Solar Turbines to Use ... - 3DPrint.com." 19 Apr. 2017,
https://3dprint.com/171698/sigma-labs-solar-turbines-inc/​. Accessed 22 May. 2018.

3. Kim, J. H., et al. “Model Development and Simulation of Transient Behavior of Heavy Duty Gas
Turbines.” ​Journal of Engineering for Gas Turbines and Power​, vol. 123, no. 3, 2001, p. 589.,
doi:10.1115/1.1370973.

4. Hanachi, et al. “Performance-Based Gas Turbine Health Monitoring, Diagnostics, and Prognostics:
A Survey.” IEEE Transactions on Reliability, 2018.

5. Simon, D. L., et al, A. W. , 2014 “A Model-Based Anomaly Detection Approach for Analyzing
Streaming Aircraft Engine Measurement Data.” ASME Paper No. GT2014-27172. 2014.

6. HDBSCAN ​http://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html

7. Jolliffe I.T. “Principal Component Analysis”. Springer. 2002

71

https://www.solarturbines.com/en_US/products/gas-turbines.html
https://3dprint.com/171698/sigma-labs-solar-turbines-inc/
http://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html

Appendices

Appendix A: DSE Knowledge
1. DSE 200: Python for Data Analysis

1.1. Principal Component Analysis
1.2. Native Python
1.3. Use of Python libraries

1.3.1. Matplotlib
1.3.2. Pandas

2. DSE 220: Machine Learning
2.1. Data cleaning
2.2. K-means Clustering
2.3. Hierarchical clustering
2.4. Model Fine Tuning

3. DSE 210: Probability and Statistics using Python
3.1. Statistical Methodologies
3.2. Accuracy metrics

4. DSE 201: Data Management Systems
4.1. PostgreSQL
4.2. Structured Query Language (SQL)

5. DSE 230 Data Analysis Using Hadoop and Spark
5.1. Approach to scalability

6. DSE 203 Data Integration and ETL
6.1. Integration of 10 minute and 1 hour data sets

6.1.1. Composite tag creation
6.1.2. Feature matching

7. Data Visualization
7.1. Visual idioms
7.2. Expressiveness and effectiveness
7.3. Tableau Dashboards
7.4. JavaScript Dashboard

72

Appendix B: Data and Software Archive
A. GitHub repositories

a. Pipeline: ​https://github.com/j-goldsmith/TurbineTimeSeries
b. User Interface: ​https://github.com/j-goldsmith/TurbineTimeSeries.UI
c. EDA (Working): ​https://github.com/mGalarnyk/AnomalyDetectionMachineData/

i. Reports
ii. EDA notebooks

B. Team Drive: ​https://drive.google.com/drive/folders/0AKP5YIrmOxVVUk9PVA
a. Reports
b. Presentations
c. Data
d. Visualizations
e. Google Colab Jupyter Notebooks

C. Dataset
a. Access to raw data requires password and authorization from Solar Turbines
b. Data required for UI:

https://drive.google.com/open?id=1MM0GsgNS1N5Ur7FoocBmVdwn-PN53uYz

73

https://github.com/j-goldsmith/TurbineTimeSeries
https://github.com/j-goldsmith/TurbineTimeSeries.UI
https://github.com/mGalarnyk/AnomalyDetectionMachineData/
https://drive.google.com/drive/folders/0AKP5YIrmOxVVUk9PVA
https://drive.google.com/open?id=1MM0GsgNS1N5Ur7FoocBmVdwn-PN53uYz

