TRANSIENT STATE DETECTION IN MACHINE DATA

JUNE 9, 2018

THE TEAM

Solar Turbines

A Caterpillar Company

MEMBERS Garrett Cheung Data Engineer

Michael Galarnyk Bookkeeper

Jared Goldsmith Record Keeper

Jillian Jarrett External Team Coordinator

Orysya Stus Internal Team Coordinator

ADVISORS

Dr. Yoav Freund University of California, San Diego

> Dr. Chad Holcomb Solar Turbines

SOLAR TURBINES

INSIGHT PLATFORM

THE CHALLENGE

To identify and distinguish transient states in Solar Turbines' packages.

THE MACHINERY

- 'Packages' are units comprised of compressors, combustors, turbines and application specific components
- Extremely complex machines with hundreds of moving parts
- Generally used for power generation and compression applications (pipelines)
- Single package has 200-600 features, time series data, events data, alerts data, etc

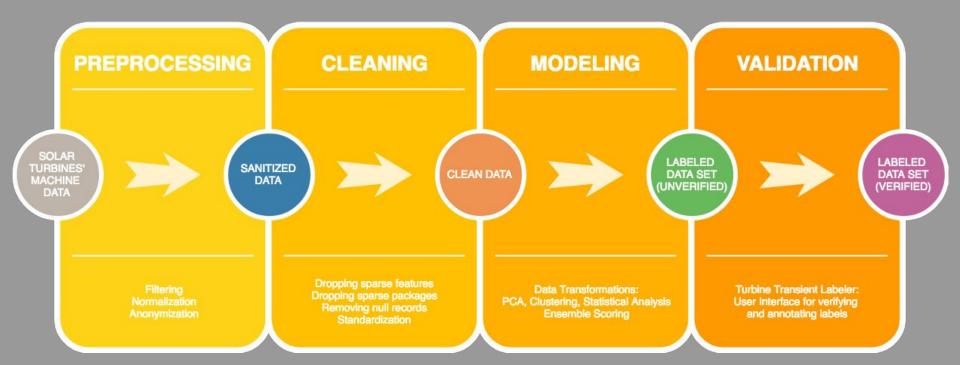
TRANSIENTS DEFINED

- Transients occur when the package is undergoing some sort of transition state
 - Speeding up or slowing down
 - Recalibrating to maintain a steady state
- In the industry, no universal definition exists
- Defined by our domain expert as "any instance where load (power output) changes by more than 25% in a 10 minute timeframe"

BUSINESS VALUE

- Improves Solar Turbines' Alerting capability. Not all transition states are noteworthy, and proper identification can reduce the number of non-value added alerts reported to customers
- Failure analysis. It is believed that some transients are related to machine failures. To even begin testing this hypothesis, transients must fiTO Arst be identified

PROCESS OVERVIEW



THE DATA

RAW DATA

Data Specifications					
Number of Packages	Timeframe	Data Resolution	Features		
72 (total)	2 years	1 hr and 10 minute	Model1: 146 features Model2: 77 features		
Model1: 33 Model2: 39	Start: 12/5/2015	for both models	Sensor readings: pressures, temperatures, speed,		
Model2. 35	12/3/2013	modets	displacement		
	End: 12/5/2017		Package basics: timestamps, engine hours, package serial numbers, etc		
			Programmable logic controller (PLC) readings: signals sent to the machine through the control system		

DATA ACQUISITION

Data Preprocessing (Required to move off the Solar network)

Filtering/Data Consistency	Normalization	Anonymization
On load data: machine operating close to max output	Alerting features were normalized by their	Package serial numbers aliased
	global limits	Column names aliased:
Gas data: for dual fuel	5	measurement types and
engines, data points where	Other features were	descriptions are detailed in a
machine running on liquid fuel	normalized by values	data dictionary
were removed	suggested by domain	
	experts	
Consistent Column Names:		
Only columns which were common	Two features were not	
across all packages for each	normalized: timestamps,	
model.	and engine starts	

DATA CONSIDERATIONS

- Time series analysis requires consistent and continuous data
- Given our time range and data resolution, what's the percentage of data we actually have?

Data Completeness(calculated per psn)	Model1	Model2
90th percentile	89.3%	94.9%
Median	48.6%	82.3%
25th percentile	24.8%	69.2%

• Availability is similar for packages on the high end but Model 2 data has many more higher availability datasets

UNDERSTANDING OUR DATASET

- Working without labels or domain expertise required extensive exploratory data analysis
- Early exploration revealed points in time where many of our features would spike or dip simultaneously
 These were later verified to be 'transient' states
- Used unsupervised learning techniques to find meaning in our dataset, specifically with the goal of identifying transients

THE PIPELINE

OUR PRODUCT

Raw Data Query Querying our relational database for a subset of data to be processed in the pipeline. Data Transformations Data preprocessing (standardization cleaning)

(standardization, cleaning, etc) and transformation (PCA, clustering, statistical methods)

Visual Validation

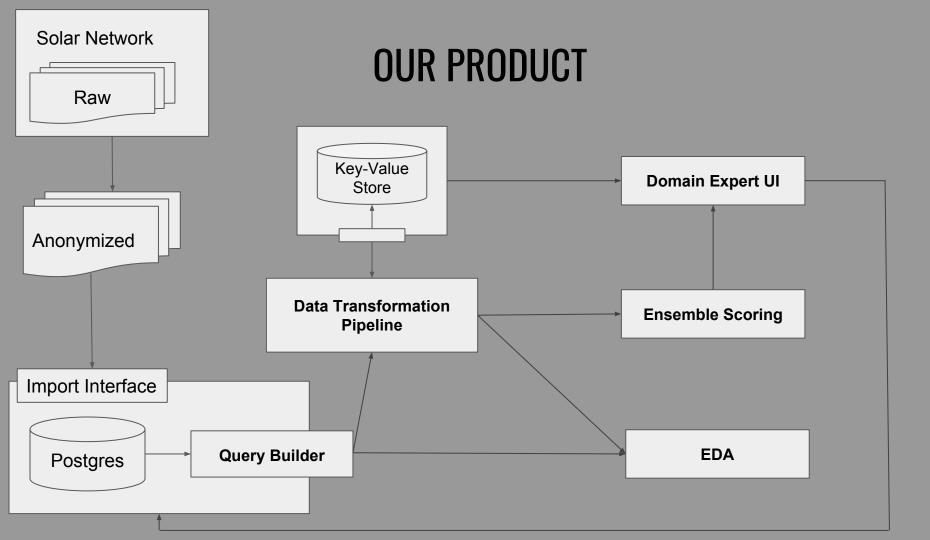
Javascript dashboard allows domain experts to visualize and validate our model predictions. Dashboard will compare our model's predictions to known labels for a baseline accuracy score.

Transient Ensemble Scores

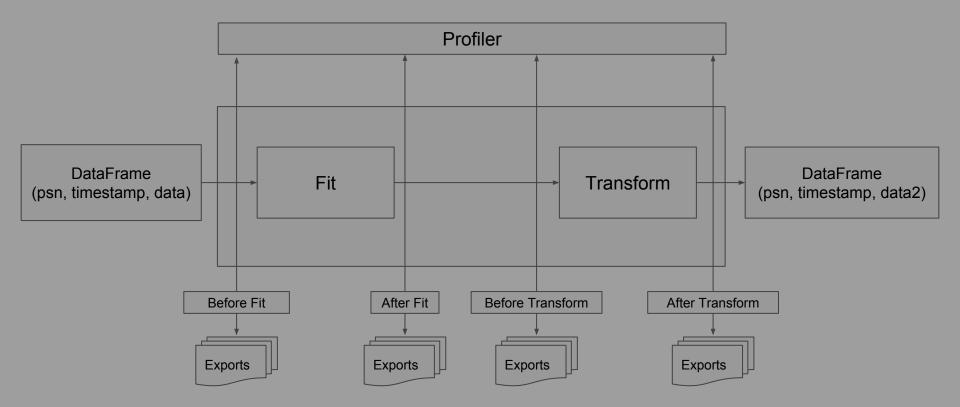
Normalize, combine scores, rank or classify data points are either transient or normal.

Derived Feature Cache

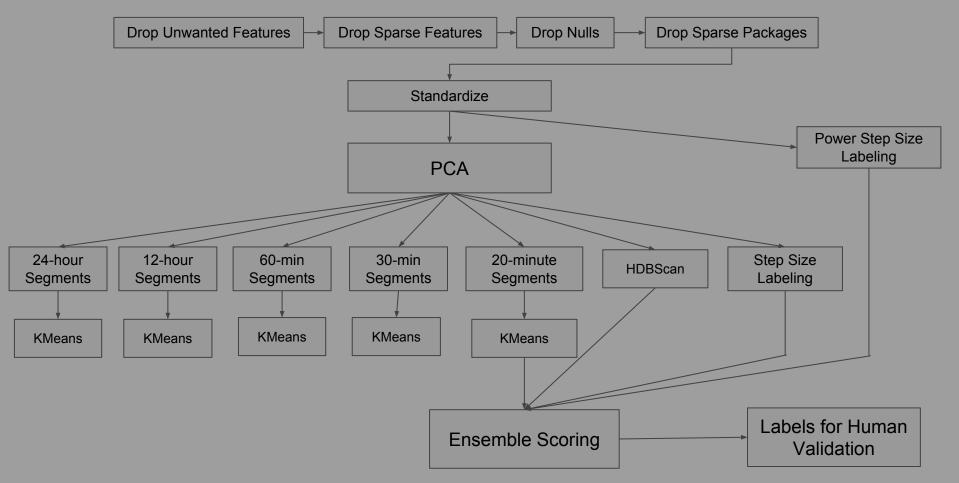
Allows for scalability and reproducibility of our data pipeline.



TRANSFORMATION



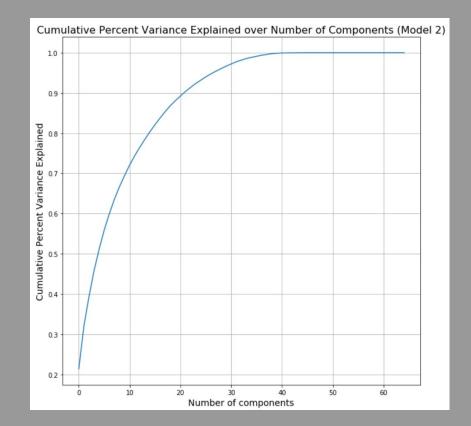
DATA TRANSFORMATION PIPELINE



DATA TRANSFORMATION

PRINCIPAL COMPONENTS ANALYSIS

- PCA by fleet (all Model2 packages)
- 20 principal components retain 88.02% of the dataset's variance
- Helped us identify important features in our dataset



KEY FINDINGS THROUGH PCA (MODEL 2)

Principal Component	Primary Contributing Features	Percentage of Variance Explained	Cumulative Percentage of Variance Explained
1	Load (Power output): temperatures, power	21.35%	21.35%
2	Controller signals: command, position	10.59%	31.94%
3	Pressure	7.36%	39.30%
4	Unclear	6.45%	45.75%
5	Temperatures	5.37%	51.12%

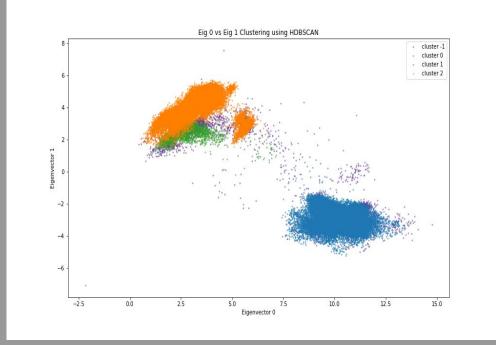
STATISTICAL METHODOLOGIES

Function Name	Inputs	Outputs	Description/Application	
StepSize	pd.DataFrame, rolling window length, threshold (z-score)	Boolean pd.DataFrame	Calculates a rolling mean and rolling standard deviation for each column, and returns true for any data points outside n standard deviations (threshold). Applied to transformed features.	
PowerJump	pd.DataFrame, column of interest, threshold (%)	Boolean pd.DataFrame	Returns true for all points where column spikes or dips more than the defined threshold. Applied to raw features.	
KinkFinder	pd.DataFrame, Threshold (%)	Boolean pd.DataFrame	Returns true for any clusters with (max - min)/ max > threshold. Applied to time split clusters.	

CLUSTERING 10 MINUTE DATA - HDBSCAN

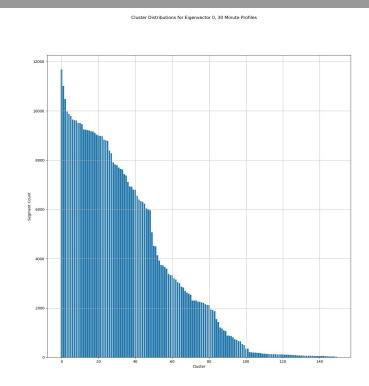
Hierarchical Density-Based Spatial Clustering of Applications with Noise

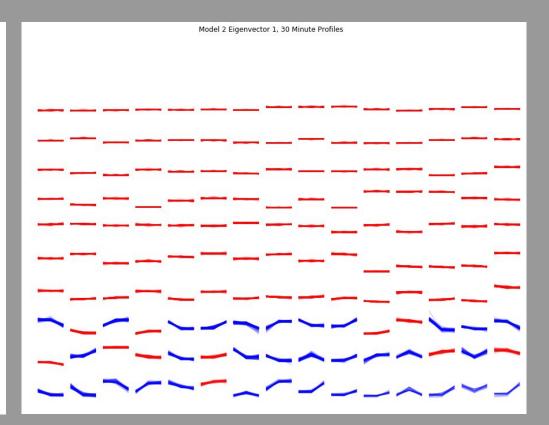
- Similar to DBSCAN but allows for clusters of varying density
- Unsupervised: does not require number of clusters to be specified
- Does not label all points (noise)
- Retains high performance speed on larger datasets

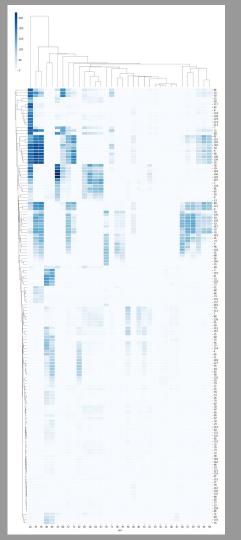


McInnes L, Healy J. Accelerated Hierarchical Density Based Clustering In: 2017 IEEE International Conference on Data Mining Workshops (ICDMW), IEEE, pp 33-42. 2017

CLUSTERING N-10 MINUTE SEGMENTS - K-MEANS



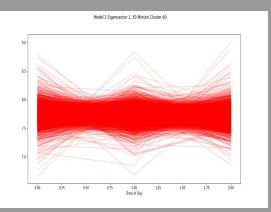




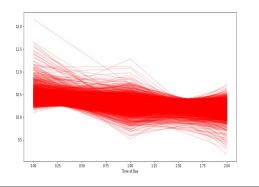
CLUSTER ANALYSIS

- Determine which clusters (30 min segments) and which packages are most similar to one another.
- Cluster maps using euclidean distance as the distance metric was used.
- Repeating analysis for eigenvectors 1-4.

CLUSTER ANALYSIS - RESULTS



Model 2 Eigenvector 1, 30 Minute Cluster 86

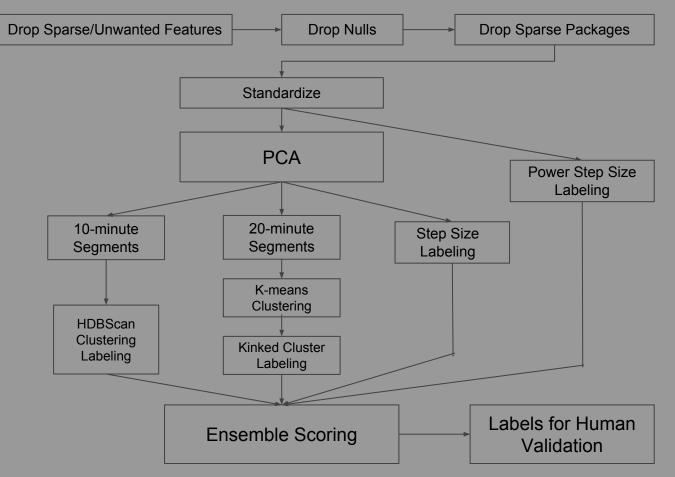


 Clusters close to another another based on euclidean distance: 60, 86
 The shape of the data is similar.

- Packages close in euclidean distance:
 63, 50, 51
 - Might suggest that at the same site, operated by the same customers for the same application.

THE MODEL

COMBINING AND UTILIZING OUR BEST RESULTS



ENSEMBLE SCORING

- Score each of our four detection methods' outputs to be between 0 and 1, where 0=normal and 1=transient
- Combine our scores to give each (psn, timestamp) a TRANSIENT_SCORE
- Defined a threshold, TRANSIENT THRESHOLD, that we use to delineate transients from normal in our ensemble model

 TRANSIENT_THRESHOLD = 2
- If TRANSIENT SCORE > TRANSIENT THRESHOLD, our model labels that (psn, timestamp) to be a transient occurrence

MODEL FINE TUNING AND VALIDATION

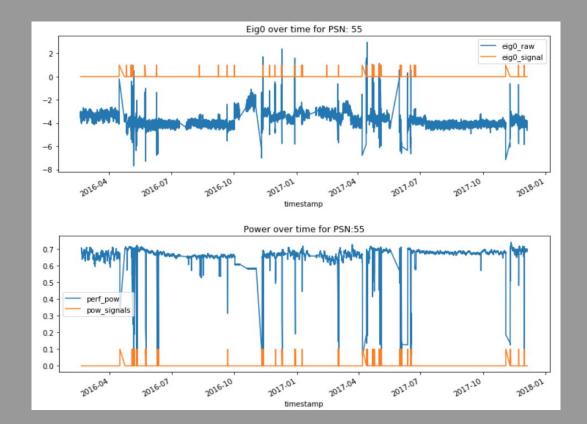
USING DELTA POWER TO IDENTIFY TRANSIENTS

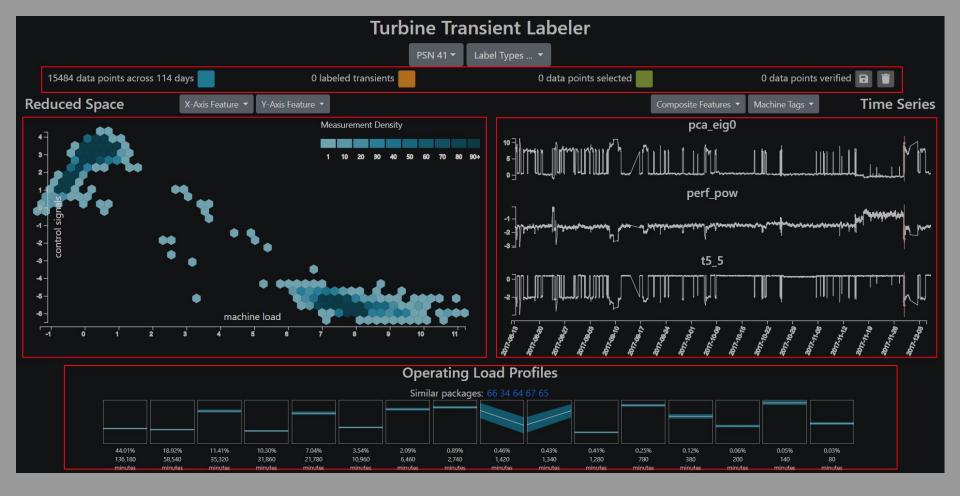
- Power is the amount of energy transferred per unit time
- It is one of our raw features for Model2, and can serve as a baseline for comparison
- Labeled data points with a 25% change in power
- Hard to ascertain which model is "better"
 - Power: simple model, utilizes one feature from the raw data, so it is subject to sensor errors, etc
 - Eigenvectors: more complex, difficult to interpret. Comprised of multiple features and more likely to catch changes that a single feature might miss
- Caveat: Misses emissions mode related transients

MODEL FINE TUNING

TOP PLOT: Eig0 over time. Yellow spikes = transients as detected by our stepsize function (rolling window = 1 day, threshold=5

BOTTOM PLOT: Power over time. Yellow spikes =transients detected using powerjump function (threshold=0.25)





FUTURE DIRECTIONS

LONGER TERM GOALS

• DASHBOARD GAMIFICATION

- Incorporating elements to engage users and encourage their participation
- High scorers, easter eggs, etc.
- SHUTDOWN ANALYSIS
 - Mapping our transients to unplanned shutdowns and see if there exists a correlation
- TRANSIENT PREDICTION AND SUBTYPING
 - Supervised learning techniques
- INTEGRATION AT SOLAR TURBINES

SUMMARY

